SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fenu G) "

Sökning: WFRF:(Fenu G)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Miyamoto, H., et al. (författare)
  • The Euso@turlab : Test of mini-EUSO engineering model
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented. 
  •  
3.
  • Miyamoto, H., et al. (författare)
  • The EUSO@TurLab : Test of Mini-EUSO Engineering Model
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented.
  •  
4.
  •  
5.
  • Bisconti, F, et al. (författare)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
6.
  • Bisconti, F., et al. (författare)
  • Mini-EUSO engineering model : tests in open-sky condition
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth's atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported.
  •  
7.
  • Bisconti, F., et al. (författare)
  • Pre-flight qualification tests of the Mini-EUSO telescope engineering model
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 53:1, s. 133-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is part of the JEM-EUSO program and operates on board the International Space Station (ISS). It is a UV-telescope with single-photon counting capability looking at nighttime downwards to the Earth through a nadir-facing UV-transparent window. As part of the pre-flight tests, the Mini-EUSO engineering model, a telescope with 1/9 of the original focal surface and a lens of 2.5 cm diameter, has been built and tested. Tests of the Mini-EUSO engineering model have been made in laboratory and in open-sky conditions. Laboratory tests have been performed at the TurLab facility, located at the Physics Department of the University of Turin, equipped with a rotating tank containing different types of materials and light sources. In this way, the configuration for the observation of the Earth from space was emulated, including the Mini-EUSO trigger schemes. In addition to the qualification and calibration tests, the Mini-EUSO engineering model has also been used to evaluate the possibility of using a JEM-EUSO-type detector for applications such as observation of space debris. Furthermore, observations in open-sky conditions allowed the studies of natural light sources such as stars, meteors, planets, and artificial light sources such as airplanes, satellites reflecting the sunlight, and city lights. Most of these targets could be detected also with Mini-EUSO. In this paper, the tests in laboratory and in open-sky conditions are reported, as well as the obtained results. In addition, the contribution that such tests provided to foresee and improve the performance of Mini-EUSO on board the ISS is discussed.
  •  
8.
  • Marcelli, L., et al. (författare)
  • Integration, qualification, and launch of the Mini-EUSO telescope on board the ISS
  • 2023
  • Ingår i: Rendiconti Lincei SCIENZE FISICHE E NATURALI. - : Springer Nature. - 2037-4631 .- 1720-0776. ; 34:1, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is a high-sensitivity imaging telescope that observes the Earth from the ISS in the near ultraviolet band (290÷ 430 nm), through the nadir-facing, UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019, has a field of view of 44∘, a spatial resolution on the Earth’s surface of 6.3 km and a temporal sampling rate of 2.5 microseconds. Thanks to its triggering and on-board processing, the telescope is capable of detecting UV emissions of cosmic, atmospheric, and terrestrial origin on different time scales, from a few microseconds up to tens of milliseconds. The optics is composed of two Fresnel lenses focusing light onto an array of 36 Hamamatsu Multi-Anode PhotoMultiplier Tubes, for a total of 2304 pixels. The telescope also contains two cameras in the near-infrared and visible, an 8-by-8 array of Silicon-PhotoMultipliers and a series of UV sensors to manage night-day transitions. The scientific objectives range from the observation of atmospheric phenomena [lightning, Transient Luminous Events (TLEs), ELVES], the study of meteoroids, the search of interstellar meteoroids and strange quark matter, mapping of the Earth’s nocturnal emissions in the ultraviolet range, and the search of cosmic rays with energy above 1021 eV. The instrument has been integrated and qualified in 2019, with the final tests in Baikonur prior to its launch. Operations involve periodic installation in the Zvezda module of the station with observations during the crew night time, with periodic downlink of data samples, with the full data being sent to the ground via pouches containing the data disks. Mission planning involves the selection of the optimal orbits to maximize the scientific return of the instrument. In this work, we will describe the various phases of construction, testing, and qualification prior to the launch and the in-flight operations of the instrument on board the ISS.
  •  
9.
  • Miyamoto, H, et al. (författare)
  • Space debris detection and tracking with the techniques of cosmic ray physics
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector. 
  •  
10.
  • Miyamoto, H., et al. (författare)
  • Space Debris detection and tracking with the techniques of cosmic ray physics
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector.
  •  
11.
  • Barrillon, P., et al. (författare)
  • The EUSO@TurLab project in the framework of the JEM-EUSO program
  • 2023
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 55:2, s. 569-602
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All the experiments are designed and performed based on simulations of the expected response of the detectors to be flown in space. In April 2016 the TUS detector and more recently in October 2019 the Mini-EUSO experiment, both part of the JEM-EUSO program, have been placed in orbit to map the UV Earth emissions. It is, therefore, now possible to compare the replicas performed at TurLab with the actual images detected in space to understand the level of fidelity in terms of reproduction of the expected signals. We show that the laboratory tests reproduce at the order of magnitude level the measurements from space in terms of spatial extension and time duration of the emitted UV light, as well as the intensity in terms of expected counts per pixel per unit time when atmospheric transient events, diffuse nightlow background light, and artificial light sources are considered. Therefore, TurLab is found to be a very useful facility for testing the acquisition logic of the detectors of the present and future missions of the JEM-EUSO program and beyond in order to reproduce atmospheric signals in the laboratory. 
  •  
12.
  • Casolino, M, et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
13.
  • Casolino, M., et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44◦), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array.
  •  
14.
  • Giovannoni, G., et al. (författare)
  • Smouldering multiple sclerosis: the ‘real MS’
  • 2022
  • Ingår i: Therapeutic Advances in Neurological Disorders. - : SAGE Publications. - 1756-2856 .- 1756-2864. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a philosophical approach or deductive reasoning, we challenge the dominant clinico-radiological worldview that defines multiple sclerosis (MS) as a focal inflammatory disease of the central nervous system (CNS). We provide a range of evidence to argue that the ‘real MS’ is in fact driven primarily by a smouldering pathological disease process. In natural history studies and clinical trials, relapses and focal activity revealed by magnetic resonance imaging (MRI) in MS patients on placebo or on disease-modifying therapies (DMTs) were found to be poor predictors of long-term disease evolution and were dissociated from disability outcomes. In addition, the progressive accumulation of disability in MS can occur independently of relapse activity from early in the disease course. This scenario is underpinned by a more diffuse smouldering pathological process that may affect the entire CNS. Many putative pathological drivers of smouldering MS can be potentially modified by specific therapeutic strategies, an approach that may have major implications for the management of MS patients. We hypothesise that therapeutically targeting a state of ‘no evident inflammatory disease activity’ (NEIDA) cannot sufficiently prevent disability accumulation in MS, meaning that treatment should also focus on other brain and spinal cord pathological processes contributing to the slow loss of neurological function. This should also be complemented with a holistic approach to the management of other systemic disease processes that have been shown to worsen MS outcomes. © The Author(s), 2022.
  •  
15.
  • Blanchini, F., et al. (författare)
  • Model-Free Plant Tuning
  • 2017
  • Ingår i: IEEE Transactions on Automatic Control. - 0018-9286. ; 62:6, s. 2623-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • Given a static plant described by a differentiable input-output function, which is completely unknown, but whose Jacobian takes values in a known polytope in the matrix space, this paper considers the problem of tuning (i.e., driving to a desired value) the output, by suitably choosing the input. It is shown that, if the polytope is robustly non-singular (or has full rank, in the non-square case), then a suitable tuning scheme drives the output to the desired point. The proof exploits a Lyapunov-like function and applies a well known game-theoretic result, concerning the existence of a saddle point for a minmax zero-sum game. When the plant output is represented in an implicit form, it is shown that the same result can be obtained, resorting to a different Lyapunov-like function. The case in which proper input or output constraints must be enforced during the transient is considered as well. Some application examples are proposed to show the effectiveness of the approach.
  •  
16.
  • Fenu, F., et al. (författare)
  • Preliminary analysis of EUSO - TA data
  • 2016
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 718:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUSO-TA detector is a pathfinder for the JEM-EUSO project and is currently installed in Black Rock Mesa (Utah) on the site of the Telescope Array fluorescence detectors. Aim of this experiment is to validate the observation principle of JEM-EUSO on air showers measured from ground. The experiment gets data in coincidence with the TA triggers to increase the likelihood of cosmic ray detection. In this framework the collaboration is also testing the detector response with respect to several test events from lasers and LED flashers. Moreover, another aim of the project is the validation of the stability of the data acquisition chain in real sky condition and the optimization of the trigger scheme for the rejection of background. Data analysis is ongoing to identify cosmic ray events in coincidence with the TA detector. In this contribution we will show the response of the EUSO-TA detector to all the different typologies of events and we will show some preliminary results on the trigger optimization performed on such data.
  •  
17.
  • Suino, G., et al. (författare)
  • Simulations of Mini-EUSO observations of UV phenomena in the atmosphere
  • 2017
  • Ingår i: Proceedings of Science. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Mini-EUSO instrument is an UV telescope to be placed aboard the International Space Station (ISS) in the framework of the JEM-EUSO project. Mini-EUSO will map the Earth in the UV range (300-400 nm) with a spatial resolution of 5 km and a temporal resolution of 2.5 μs. Therefore, Mini-EUSO offers an excellent opportunity to study a variety of physics phenomena such as transient luminous events and meteors, as well as searching for strange quark matter and test the detection of space debris. Mini-EUSO will serve also as a pathfinder for the study of Extreme Energy Cosmic Rays from space. A review on the expected performance of Mini-EUSO in detecting a variety of physical phenomena simulated with the EUSO Simulation and Analysis Framework (ESAF) package is described.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy