SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferlini Alessandra) "

Sökning: WFRF:(Ferlini Alessandra)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garnier, Nicolas, et al. (författare)
  • Genetic newborn screening and digital technologies : A project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe
  • 2023
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.
  •  
2.
  • Ayoglu, Burcu, et al. (författare)
  • Affinity proteomics within rare diseases : a BIO-NMD study for blood biomarkers of muscular dystrophies
  • 2014
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 6:7, s. 918-936
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the recent progress in the broad-scaled analysis of proteins in body fluids, there is still a lack in protein profiling approaches for biomarkers of rare diseases. Scarcity of samples is the main obstacle hindering attempts to apply discovery driven protein profiling in rare diseases. We addressed this challenge by combining samples collected within the BIO-NMD consortium from four geographically dispersed clinical sites to identify protein markers associated with muscular dystrophy using an antibody bead array platform with 384 antibodies. Based on concordance in statistical significance and confirmatory results obtained from analysis of both serum and plasma, we identified eleven proteins associated with muscular dystrophy, among which four proteins were elevated in blood from muscular dystrophy patients: carbonic anhydrase III (CA3) and myosin light chain 3 (MYL3), both specifically expressed in slow-twitch muscle fibers and mitochondrial malate dehydrogenase 2 (MDH2) and electron transfer flavo-protein A (ETFA). Using age-matched sub-cohorts, 9 protein profiles correlating with disease progression and severity were identified, which hold promise for the development of new clinical tools for management of dystrophinopathies.
  •  
3.
  • Busi, Micol, et al. (författare)
  • Novel mutations in the SLC26A4 gene
  • 2012
  • Ingår i: International Journal of Pediatric Otorhinolaryngology. - Amsterdam : Elsevier. - 0165-5876 .- 1872-8464. ; 76:9, s. 1249-1254
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Mutations in the SLC26A4 gene (7q22.3–7q31.1) are considered one of the most common causes of genetic hearing loss. There are two clinical forms related to these mutations: syndromic and non-syndromic deafness. The first one is named Pendred Syndrome (PS) when deafness is associated with thyroid goiter; the second is called DFNB4, when no other symptoms are present. Both are transmitted as an autosomal recessive trait, but simple heterozygotes can develop both forms of deafness. Actually it is thought that Pendred Syndrome occurs when both alleles of SLC26A4 gene are mutated; DFNB4 seems due to monoallelic mutations. PS and DFNB4 can be associated with inner ear malformations. In most of the cases (around 80%), these consist in Enlarged Vestibular Aqueduct (EVA). EVA can also be present without SLC26A4 mutations.Understanding the role of new SLC26A4 variants should facilitate clinical assessment, as well as diagnostic and therapeutic approaches. This investigation aims to detect and report genetic causes of two unrelated Italian boys with hearing loss.Methods: Patients and family members underwent clinical, audiological and genetic evaluations. To identify genetic mutations, DNA sequencing of SLC26A4 gene (including all 21 exons, exon-intron boundaries and promoter region) was carried out.Results: Both probands were affected by congenital, progressive and fluctuating mixed hearing loss. Temporal bone imaging revealed a bilateral EVA with no other abnormalities in both cases. Probands were heterozygotes for previously undescribed mutations in the SLC26A4 gene: R409H/IVS2+1delG (proband 1) and L236P/K590X (proband 2). No other mutations were detected in GJB2, GJB6 genes or mitochondrial DNA (mit-DNA).Conclusions: The IVS2+1delG and K590X mutations have not yet been described in literature but there is some evidence to suggest that they have a pathological role. The results underlined the importance of considering the complete DNA sequencing of the SLC26A4 gene for differential molecular diagnosis of deafness, especially in those patients affected by congenital, progressive and fluctuating mixed hearing loss with bilateral EVA.
  •  
4.
  • Falzarano, Maria Sofia, et al. (författare)
  • Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases
  • 2021
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. & nbsp; Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. & nbsp; Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders () whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). & nbsp; Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. & nbsp; Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening.
  •  
5.
  • Fogh, Isabella, et al. (författare)
  • A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis
  • 2014
  • Ingår i: Human Molecular Genetics. - Oxford : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:8, s. 2220-2231
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (90) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P 1.11 10(8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P 8.62 10(9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P 7.69 10(9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as 12 using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.
  •  
6.
  • Martin, Sylvia, et al. (författare)
  • Patient preferences in genetic newborn screening for rare diseases : study protocol
  • 2024
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Rare diseases (RDs) collectively impact over 30 million people in Europe. Most individual conditions have a low prevalence which has resulted in a lack of research and expertise in this field, especially regarding genetic newborn screening (gNBS). There is increasing recognition of the importance of incorporating patients’ needs and general public perspectives into the shared decision-making process regarding gNBS. This study is part of the Innovative Medicine Initiative project Screen4Care which aims at shortening the diagnostic journey for RDs by accelerating diagnosis for patients living with RDs through gNBS and the use of digital technologies, such as artificial intelligence and machine learning. Our objective will be to assess expecting parent’s perspectives, attitudes and preferences regarding gNBS for RDs in Italy and Germany.Methods and analysis A mixed method approach will assess perspectives, attitudes and preferences of (1) expecting parents seeking genetic consultation and (2) ‘healthy’ expecting parents from the general population in two countries (Germany and Italy). Focus groups and interviews using the nominal group technique and ranking exercises will be performed (qualitative phase). The results will inform the treatment of attributes to be assessed via a survey and a discrete choice experiment (DCE). The total recruitment sample will be 2084 participants (approximatively 1000 participants in each country for the online survey). A combination of thematic qualitative and logit-based quantitative approaches will be used to analyse the results of the study.Ethics and dissemination This study has been approved by the Erlangen University Ethics Committee (22–246_1-B), the Freiburg University Ethics Committee (23–1005 S1-AV) and clinical centres in Italy (University of FerraraCE: 357/2023/Oss/AOUFe and Hospedale Bambino Gesu: No.2997 of 2 November 2023, Prot. No. _902) and approved for data storage and handling at the Uppsala University (2022-05806-01). The dissemination of the results will be ensured via scientific journal publication (open access).
  •  
7.
  • Passarelli, Chiara, et al. (författare)
  • Tumor Necrosis Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in Duchenne Muscular Dystrophy
  • 2020
  • Ingår i: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. Methods and Findings We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in theTNFRSF10Agene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N= 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. Conclusion We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker.
  •  
8.
  • Rossi, Rachele, et al. (författare)
  • A Proof of Principle Proteomic Study Detects Dystrophin in Human Plasma : Implications in DMD Diagnosis and Clinical Monitoring
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 24:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease caused by pathogenic variations in the DMD gene. There is a need for robust DMD biomarkers for diagnostic screening and to aid therapy monitoring. Creatine kinase, to date, is the only routinely used blood biomarker for DMD, although it lacks specificity and does not correlate with disease severity. To fill this critical gap, we present here novel data about dystrophin protein fragments detected in human plasma by a suspension bead immunoassay using two validated anti-dystrophin-specific antibodies. Using both antibodies, a reduction of the dystrophin signal is detected in a small cohort of plasma samples from DMD patients when compared to healthy controls, female carriers, and other neuromuscular diseases. We also demonstrate the detection of dystrophin protein by an antibody-independent method using targeted liquid chromatography mass spectrometry. This last assay detects three different dystrophin peptides in all healthy individuals analysed and supports our finding that dystrophin protein is detectable in plasma. The results of our proof-of-concept study encourage further studies in larger sample cohorts to investigate the value of dystrophin protein as a low invasive blood biomarker for diagnostic screening and clinical monitoring of DMD.
  •  
9.
  • Rossi, Rachele, et al. (författare)
  • Circadian Genes as Exploratory Biomarkers in DMD : Results From Both the mdx Mouse Model and Patients
  • 2021
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients' plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.
  •  
10.
  •  
11.
  • Wein, Nicolas, et al. (författare)
  • Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice
  • 2014
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 20:9, s. 992-1000
  • Tidskriftsartikel (refereegranskat)abstract
    • Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative, translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we demonstrate that this isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid inducible. We confirmed IRES activity by both peptide sequencing and ribosome profiling in muscle from individuals with minimal symptoms despite the presence of truncating mutations. We generated a truncated reading frame upstream of the IRES by exon skipping, which led to synthesis of a functional N-truncated isoform in both human subject derived cell lines and in a new DMD mouse model, where expression of the truncated isoform protected muscle from contraction-induced injury and corrected muscle force to the same level as that observed in control mice. These results support a potential therapeutic approach for patients with mutations within the 5' exons of DMD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy