SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ferraton M.) "

Search: WFRF:(Ferraton M.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Birch, Jens, et al. (author)
  • In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL
  • 2014
  • In: INTERNATIONAL WORKSHOP ON NEUTRON OPTICS AND DETECTORS (NOPandD 2013). - : IOP Publishing: Conference Series / Institute of Physics (IoP).
  • Conference paper (peer-reviewed)abstract
    • A neutron detector concept based on solid layers of boron carbide enriched in 1 B has been in development for the last few years as an alternative for He-3 by collaboration between the ILL, ESS and Linkoping University. This Multi-Grid detector uses layers of aluminum substrates coated with (B4C)-B-10 on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the He-3 detectors of IN6 at ILL. The 1 B detector has an active area of 32 x 48 cm(2). It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional He-3 detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background.
  •  
2.
  • Birch, J., et al. (author)
  • Multi-Grid boron-10 detector for time-of-flight spectrometers in neutron scattering science
  • 2015
  • In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Conference paper (peer-reviewed)abstract
    • The Multi-Grid (MG) detector has been introduced at ILL and developed by a collaboration between ILL, ESS and Linkoping University. This detector design addresses the severely decreased availability of He3, in particular for neutron scattering instruments with large-area detectors, such as time-of-flight neutron spectrometers at ESS and other facilities. The MG detector is based on thin converter films of boron-10 carbide arranged in layers orthogonal to the incoming neutrons. The design of the detector provides position resolution, efficiency competitive with He3 and a strong gamma rejection capability. This paper presents the MG large-area (2.4m2) demonstrator and the progress made in order to meet the needs of production of B4C-coated layers, mechanical parts and assembly on a scale similar to that of the final detectors for ESS. A particular effort was made to produce aluminium detector parts with a low alpha background, successfully reducing the background rate to acceptable levels. Following the IN5 demonstrator, a compact prototype has been designed in order to finalise the electronic readout to be used at the ESS instruments equipped with the MG.
  •  
3.
  • Birch, J, et al. (author)
  • Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium
  • 2015
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 10
  • Journal article (peer-reviewed)abstract
    • Thermal neutron detector based on films of (B4C)-B-10 have been developed as an alternative to He-3 detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of alpha emitters, however, the background from alpha particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as alpha particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in background by two orders of magnitude. A new large-area prototype has been built incorporating these modifications.
  •  
4.
  • Khaplanov, Anton, et al. (author)
  • Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films
  • 2013
  • In: Journal of Instrumentation. - 1748-0221. ; 8
  • Journal article (peer-reviewed)abstract
    • Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare He-3 gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for gamma-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement with B-10 thin film prototypes and a He-3 detector. It is demonstrated that equal gamma-ray rejection to that of He-3 tubes is achieved with the new technology. The arguments and results presented here are also applicable to gas detectors with converters other than solid B-10 layers, such as Li-6 layers and (BF3)-B-10 gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view