SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ferrazzi Enrico) "

Search: WFRF:(Ferrazzi Enrico)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mylrea-Foley, Bronacha, et al. (author)
  • Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise : the TRUFFLE 2 randomised trial protocol
  • 2022
  • In: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Introduction: Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years.Methods and analysis: Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is <10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (>= 4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire.Ethics and dissemination: The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy.
  •  
2.
  • Van Holsbeke, Caroline, et al. (author)
  • External validation of mathematical models to distinguish between benign and malignant adnexal tumors: A multicenter study by the International Ovarian Tumor Analysis group
  • 2007
  • In: Clinical Cancer Research. - 1078-0432. ; 13:15, s. 4440-4447
  • Journal article (peer-reviewed)abstract
    • Purpose: Several scoring systems have been developed to distinguish between benign and malignant adnexal tumors. However, few of them have been externally validated in new populations. Our aim was to compare their performance on a prospectively collected large multicenter data set. Experimental Design: In phase I of the International Ovarian Tumor Analysis multicenter study, patients with a persistent adnexal mass were examined with transvaginal ultrasound and color Doppler imaging. More than 50 end point variables were prospectively recorded for analysis. The outcome measure was the histologic classification of excised tissue as malignant or benign. We used the International Ovarian Tumor Analysis data to test the accuracy of previously published scoring systems. Receiver operating characteristic curves were constructed to compare the performance of the models. Results: Data from 1,066 patients were included; 800 patients (75%) had benign tumors and 266 patients (25%) had malignant tumors. The morphologic scoring system used by Lerner gave an area under the receiver operating characteristic curve (AUC) of 0.68, whereas the multimodal risk of malignancy index used by Jacobs gave an AUC of 0.88. The corresponding values for logistic regression and artificial neural network models varied between 0.76 and 0.91 and between 0.87 and 0.90, respectively. Advanced kernel-based classifiers gave an AUC of up to 0.92. Conclusion: The performance of the risk of malignancy index was similar to that of most logistic regression and artificial neural network models. The best result was obtained with a relevance vector machine with radial basis function kernel. Because the models were tested on a large multicenter data set, results are likely to be generally applicable.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view