SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fice Jason 1985) "

Sökning: WFRF:(Fice Jason 1985)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fice, Jason, 1985, et al. (författare)
  • Dynamic Spatial Tuning Patterns of Shoulder Muscles with Volunteers in a Driving Posture
  • 2021
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Computational human body models (HBMs) of drivers for pre-crash simulations need active shoulder muscle control, and volunteer data are lacking. The goal of this paper was to build shoulder muscle dynamic spatial tuning patterns, with a secondary focus to present shoulder kinematic evaluation data. 8M and 9F volunteers sat in a driver posture, with their torso restrained, and were exposed to upper arm dynamic perturbations in eight directions perpendicular to the humerus. A dropping 8-kg weight connected to the elbow through pulleys applied the loads; the exact timing and direction were unknown. Activity in 11 shoulder muscles was measured using surface electrodes, and upper arm kinematics were measured with three cameras. We found directionally specific muscle activity and presented dynamic spatial tuning patterns for each muscle separated by sex. The preferred directions, i.e. the vector mean of a spatial tuning pattern, were similar between males and females, with the largest difference of 31° in the pectoralis major muscle. Males and females had similar elbow displacements. The maxima of elbow displacements in the loading plane for males was 189 ± 36 mm during flexion loading, and for females, it was 196 ± 36 mm during adduction loading. The data presented here can be used to design shoulder muscle controllers for HBMs and evaluate the performance of shoulder models.
  •  
3.
  • Fice, Jason, 1985, et al. (författare)
  • Neck Muscle and Head/Neck Kinematic Responses While Bracing Against the Steering Wheel During Front and Rear Impacts
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 49:3, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Drivers often react to an impending collision by bracing against the steering wheel. The goal of the present study was to quantify the effect of bracing on neck muscle activity and head/torso kinematics during low-speed front and rear impacts. Eleven seated subjects (3F, 8 M) experienced multiple sled impacts (Delta v = 0.77 m/s; a(peak) = 19.9 m/s(2), Delta t = 65.5 ms) with their hands on the steering wheel in two conditions: relaxed and braced against the steering wheel. Electromyographic activity in eight neck muscles (sternohyoid, sternocleidomastoid, splenius capitis, semispinalis capitis, semispinalis cervicis, multifidus, levator scapulae, and trapezius) was recorded unilaterally with indwelling electrodes and normalized by maximum voluntary contraction (MVC) levels. Head and torso kinematics (linear acceleration, angular velocity, angular rotation, and retraction) were measured with sensors and motion tracking. Muscle and kinematic variables were compared between the relaxed and braced conditions using linear mixed models. We found that pre-impact bracing generated only small increases in the pre-impact muscle activity (< 5% MVC) when compared to the relaxed condition. Pre-impact bracing did not increase peak neck muscle responses during the impacts; instead it reduced peak trapezius and multifidus muscle activity by about half during front impacts. Bracing led to widespread changes in the peak amplitude and timing of the torso and head kinematics that were not consistent with a simple stiffening of the head/neck/torso system. Instead pre-impact bracing served to couple the torso more rigidly to the seat while not necessarily coupling the head more rigidly to the torso.
  •  
4.
  • Larsson, Emma, 1991, et al. (författare)
  • Active Human Body Model Predictions Compared to Volunteer Response in Experiments with Braking, Lane Change, and Combined Manoeuvres
  • 2019
  • Ingår i: Conference proceedings International Research Council on the Biomechanics of Injury, IRCOBI. - 2235-3151. ; :S1-9, s. 349-369
  • Konferensbidrag (refereegranskat)abstract
    • Active human body models are an important tool to study occupant interaction with safety systems in evasive manoeuvres such as braking and/or steering. In this study a finite element human body model with and without closed-loop active muscle control in the neck and lower trunk was compared to volunteer occupants in six different load cases with lane change, braking, and combined manoeuvres using standard and prepretensioned seat belts. Seven different muscle controllers, using two different muscle activation strategies based either on head and torso displacements or muscle length, and one with the controller turned off have been compared to volunteer kinematics. Cross-correlation analysis with CORA was used to evaluate the model biofidelity. The results show an improvement in CORA scores when using active muscles, compared to the model with muscle activity turned off, for one load case and similar CORA scores between the models for five load cases. CORA scores ranged from 0.78 to 0.88 for the active models and 0.70 to 0.82 from the model with muscles turned off. The active model gave a kinematic response with good biofidelity in lane change with braking, pure braking, and lane change with pre-pretensioned seat belt, but the biofidelity of the model was rated as fair in lane change with standard seat belt.
  •  
5.
  • Olafsdottir, Jóna Marin, 1985, et al. (författare)
  • Trunk muscle recruitment patterns in simulated precrash events
  • 2018
  • Ingår i: Traffic Injury Prevention. - : Informa UK Limited. - 1538-957X .- 1538-9588. ; 19, s. S186-S188
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Methods: Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2–L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. Results: EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300  ms time points, the highest EMG amplitudes were observed during perturbations to the left (–90°) and left rearward (–135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. Conclusions: These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.
  •  
6.
  • Putra, I Putu Alit, 1992, et al. (författare)
  • Kinematics Evaluation of Female Head-Neck Model with Reflexive Neck Muscles in Low-Speed Rear Impact
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This study highlights the importance of evaluating active model performance in different configurations. This study has shown that additional development of the ViVA OpenHBM must be done before being used in the development and assessement of vehicle occupant safety. This is especially relevant before using the model to conduct accident reconstructions and whiplash injury predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy