SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fidelis Krzysztof) "

Sökning: WFRF:(Fidelis Krzysztof)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkholm, Patrik, et al. (författare)
  • Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts
  • 2009
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 25:10, s. 1264-1270
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Correct prediction of residue-residue contacts in proteins that lack good templates with known structure would take ab initio protein structure prediction a large step forward. The lack of correct contacts, and in particular long-range contacts, is considered the main reason why these methods often fail. Results: We propose a novel hidden Markov model (HMM)based method for predicting residue-residue contacts from protein sequences using as training data homologous sequences, predicted secondary structure and a library of local neighborhoods (local descriptors of protein structure). The library consists of recurring structural entities incorporating short-, medium- and long-range interactions and is general enough to reassemble the cores of nearly all proteins in the PDB. The method is tested on an external test set of 606 domains with no significant sequence similarity to the training set as well as 151 domains with SCOP folds not present in the training set. Considering the top 0.2 . L predictions (L = sequence length), our HMMs obtained an accuracy of 22.8% for long-range interactions in new fold targets, and an average accuracy of 28.6% for long-, medium- and short- range contacts. This is a significant performance increase over currently available methods when comparing against results published in the literature.
  •  
2.
  • Hvidsten, Torgeir R, et al. (författare)
  • A comprehensive analysis of the structure-function relationship in proteins based on local structure similarity
  • 2009
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:7, s. e6266-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Sequence similarity to characterized proteins provides testable functional hypotheses for less than 50% of the proteins identified by genome sequencing projects. With structural genomics it is believed that structural similarities may give functional hypotheses for many of the remaining proteins. METHODOLOGY/PRINCIPAL FINDINGS: We provide a systematic analysis of the structure-function relationship in proteins using the novel concept of local descriptors of protein structure. A local descriptor is a small substructure of a protein which includes both short- and long-range interactions. We employ a library of commonly reoccurring local descriptors general enough to assemble most existing protein structures. We then model the relationship between these local shapes and Gene Ontology using rule-based learning. Our IF-THEN rule model offers legible, high resolution descriptions that combine local substructures and is able to discriminate functions even for functionally versatile folds such as the frequently occurring TIM barrel and Rossmann fold. By evaluating the predictive performance of the model, we provide a comprehensive quantification of the structure-function relationship based only on local structure similarity. Our findings are, among others, that conserved structure is a stronger prerequisite for enzymatic activity than for binding specificity, and that structure-based predictions complement sequence-based predictions. The model is capable of generating correct hypotheses, as confirmed by a literature study, even when no significant sequence similarity to characterized proteins exists. CONCLUSIONS/SIGNIFICANCE: Our approach offers a new and complete description and quantification of the structure-function relationship in proteins. By demonstrating how our predictions offer higher sensitivity than using global structure, and complement the use of sequence, we show that the presented ideas could advance the development of meta-servers in function prediction.
  •  
3.
  •  
4.
  • Hvidsten, Torgeir R., et al. (författare)
  • Local descriptors of protein structure : A systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions
  • 2009
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 75:4, s. 870-884
  • Tidskriftsartikel (refereegranskat)abstract
    • Local protein structure representations that incorporate long-range contacts between residues are often considered in protein structure comparison but have found relatively little use in structure prediction where assembly from single backbone fragments dominates. Here, we introduce the concept of local descriptors of protein structure to characterize local neighborhoods of amino acids including short- and long-range interactions. We build a library of recurring local descriptors and show that this library is general enough to allow assembly of unseen protein structures. The library could on average re-assemble 83% of 119 unseen structures, and showed little or no performance decrease between homologous targets and targets with folds not represented among domains used to build it. We then systematically evaluate the descriptor library to establish the level of the sequence signal in sets of protein fragments of similar geometrical conformation. In particular, we test whether that signal is strong enough to facilitate correct assignment and alignment of these local geometries to new sequences. We use the signal to assign descriptors to a test set of 479 sequences with less than 40% sequence identity to any domain used to build the library, and show that on average more than 50% of the backbone fragments constituting descriptors can be correctly aligned. We also use the assigned descriptors to infer SCOP folds, and show that correct predictions can be made in many of the 151 cases where PSI-BLAST was unable to detect significant sequence similarity to proteins in the library. Although the combinatorial problem of simultaneously aligning several fragments to sequence is a major bottleneck compared with single is that correct alignments imply correct long range distance constraints. The lack of these constraints is most likely the major reason why structure prediction methods fail to consistently produce adequate models when good templates are unavailable or undetectable. Thus, we believe that the current study offers new and valuable insight into the prediction of sequence-structure relationships in proteins.
  •  
5.
  • Strömbergsson, Helena, et al. (författare)
  • Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures
  • 2006
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 65:3, s. 568-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling and understanding protein-ligand interactions is one of the most important goals in computational drug discovery. To this end, proteochemometrics uses structural and chemical descriptors from several proteins and several ligands to induce interaction-models. Here, we present a new and generalized approach in which proteins varying greatly in terms of sequence and structure are represented by a library of local substructures. Using linear regression and rule-based learning, we combine such local substructures with chemical descriptors from the ligands to model binding affinity for a training set of hydrolase and lyase enzymes. We evaluate the predictive performance of these models using cross validation and sets of unseen ligand with unknown three-dimensional structure. The models are shown to generalize by outperforming models using descriptors from only proteins or only ligands, or models using global structure similarities rather than local similarities. Thus, we demonstrate that this approach is capable of describing dependencies between local structural properties and ligands in otherwise dissimilar protein structures. These dependencies are often, but not always, associated with local substructures that are in contact with the ligands. Finally, we show that strongly bound enzyme-ligand complexes require the presence of particular local substructures, while weakly bound complexes may be described by the absence of certain properties. The results demonstrate that the alignment-independent approach using local substructures is capable of describing protein-ligand interaction for largely different proteins and hence opens up for proteochemometrics-analysis of the interaction-space of entire proteomes. Current approaches are limited to families of closely related proteins. families of closely related proteins.
  •  
6.
  • Strömbergsson, Helena, 1975-, et al. (författare)
  • Interaction Model Based on Local Protein Substructures Generalizes to the Entire Structural Enzyme-Ligand Space
  • 2008
  • Ingår i: Journal of chemical information and modelling. - : American Chemical Society (ACS). - 1549-960X .- 1549-9596. ; 48:11, s. 2278-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemogenomics is a new strategy in in silico drug discovery, where the ultimate goal is to understand molecular recognition for all molecules interacting with all proteins in the proteome. To study such cross interactions, methods that can generalize over proteins that vary greatly in sequence, structure, and function are needed. We present a general quantitative approach to protein−ligand binding affinity prediction that spans the entire structural enzyme-ligand space. The model was trained on a data set composed of all available enzymes cocrystallized with druglike ligands, taken from four publicly available interaction databases, for which a crystal structure is available. Each enzyme was characterized by a set of local descriptors of protein structure that describe the binding site of the cocrystallized ligand. The ligands in the training set were described by traditional QSAR descriptors. To evaluate the model, a comprehensive test set consisting of enzyme structures and ligands was manually curated. The test set contained enzyme-ligand complexes for which no crystal structures were available, and thus the binding modes were unknown. The test set enzymes were therefore characterized by matching their entire structures to the local descriptor library constructed from the training set. Both the training and the test set contained enzyme-ligand complexes from all major enzyme classes, and the enzymes spanned a large range of sequences and folds. The experimental binding affinities (pKi) ranged from 0.5 to 11.9 (0.7−11.0 in the test set). The induced model predicted the binding affinities of the external test set enzyme-ligand complexes with an r2 of 0.53 and an RMSEP of 1.5. This demonstrates that the use of local descriptors makes it possible to create rough predictive models that can generalize over a wide range of protein targets.
  •  
7.
  • Wilczynski, Bartek, et al. (författare)
  • Using local gene expression similarities to discover regulatory binding site modules
  • 2006
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 7, s. 505-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles. Results: We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of coregulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies. Conclusion: Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy