SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Finkelstein F) "

Sökning: WFRF:(Finkelstein F)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fischer, Hubertus, et al. (författare)
  • Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:7, s. 474-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
  •  
3.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
4.
  • Loisel, J., et al. (författare)
  • Expert assessment of future vulnerability of the global peatland carbon sink
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:1, s. 70-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.
  •  
5.
  •  
6.
  •  
7.
  • Busto, David, et al. (författare)
  • Probing electronic decoherence with high-resolution attosecond photoelectron interferometry
  • 2022
  • Ingår i: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 76:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Quantum coherence plays a fundamental role in the study and control of ultrafast dynamics in matter. In the case of photoionization, entanglement of the photoelectron with the ion is a well-known source of decoherence when only one of the particles is measured. Here, we investigate decoherence due to entanglement of the radial and angular degrees of freedom of the photoelectron. We study two-photon ionization via the 2s2p autoionizing state in He using high spectral resolution photoelectron interferometry. Combining experiment and theory, we show that the strong dipole coupling of the 2s2p and 2p2 states results in the entanglement of the angular and radial degrees of freedom. This translates, in angle-integrated measurements, into a dynamic loss of coherence during autoionization. Graphic Abstract: [Figure not available: see fulltext.]. © 2022, The Author(s).
  •  
8.
  • Finkelstein, Joshua, et al. (författare)
  • Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective
  • 2021
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 17:4, s. 2256-2265
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a second-order recursive Fermi-operator expansion scheme using mixed precision floating point operations to perform electronic structure calculations using tensor core units. A performance of over 100 teraFLOPs is achieved for half-precision floating point operations on Nvidia’s A100 tensor core units. The second-order recursive Fermi-operator scheme is formulated in terms of a generalized, differentiable deep neural network structure, which solves the quantum mechanical electronic structure problem. We demonstrate how this network can be accelerated by optimizing the weight and bias values to substantially reduce the number of layers required for convergence. We also show how this machine learning approach can be used to optimize the coefficients of the recursive Fermi-operator expansion to accurately represent the fractional occupation numbers of the electronic states at finite temperatures.
  •  
9.
  • Finkelstein, Joshua, et al. (författare)
  • Quantum-Based Molecular Dynamics Simulations Using Tensor Cores
  • 2021
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 17:10, s. 6180-6192
  • Tidskriftsartikel (refereegranskat)abstract
    • Tensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating-point operations. Despite this perceived limitation, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations. The interatomic forces are calculated on-the-fly from an electronic structure that is obtained from a generalized deep neural network, where the computational structure naturally takes advantage of the exceptional processing power of the tensor cores and allows for high performance in excess of 100 Tflops on a single Nvidia A100 GPU. Stable molecular dynamics trajectories are generated using the framework of extended Lagrangian Born-Oppenheimer molecular dynamics, which combines computational efficiency with long-term stability, even when using approximate charge relaxations and force evaluations that are limited in accuracy by the numerically noisy conditions caused by the low-precision tensor core floating-point operations. A canonical ensemble simulation scheme is also presented, where the additional numerical noise in the calculated forces is absorbed into a Langevin-like dynamics.
  •  
10.
  • Finkelstein, Joshua, et al. (författare)
  • Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network
  • 2022
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 18:7, s. 4255-4268
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-independent quantum response calculations are performed using Tensor cores. This is achieved by mapping density matrix perturbation theory onto the computational structure of a deep neural network. The main computational cost of each deep layer is dominated by tensor contractions, i.e., dense matrix–matrix multiplications, in mixed-precision arithmetics, which achieves close to peak performance. Quantum response calculations are demonstrated and analyzed using self-consistent charge density-functional tight-binding theory as well as coupled-perturbed Hartree–Fock theory. For linear response calculations, a novel parameter-free convergence criterion is presented that is well-suited for numerically noisy low-precision floating point operations and we demonstrate a peak performance of almost 200 Tflops using the Tensor cores of two Nvidia A100 GPUs.
  •  
11.
  • Steg, Philippe Gabriel, et al. (författare)
  • Ticagrelor Versus Clopidogrel in Patients With ST-Elevation Acute Coronary Syndromes Intended for Reperfusion With Primary Percutaneous Coronary Intervention A Platelet Inhibition and Patient Outcomes (PLATO) Trial Subgroup Analysis
  • 2010
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 122:21, s. 2131-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Aspirin and clopidogrel are recommended for patients with acute coronary syndromes (ACS) or undergoing coronary stenting. Ticagrelor, a reversible oral P2Y12-receptor antagonist, provides faster, greater, and more consistent platelet inhibition than clopidogrel and may be useful for patients with acute ST-segment elevation (STE) ACS and planned primary percutaneous coronary intervention. Methods and Result-Platelet Inhibition and Patient Outcomes (PLATO), a randomized, double-blind trial, compared ticagrelor with clopidogrel for the prevention of vascular events in 18 624 ACS patients. This report concerns the 7544 ACS patients with STE or left bundle-branch block allocated to either ticagrelor 180-mg loading dose followed by 90 mg twice daily or clopidogrel 300-mg loading dose (with provision for 300 mg clopidogrel at percutaneous coronary intervention) followed by 75 mg daily for 6 to 12 months. The reduction of the primary end point (myocardial infarction, stroke, or cardiovascular death) with ticagrelor versus clopidogrel (10.8% versus 9.4%; hazard ratio [HR], 0.87; 95% confidence interval, 0.75 to 1.01; P=0.07) was consistent with the overall PLATO results. There was no interaction between presentation with STE/left bundle-branch block and randomized treatment (interaction P=0.29). Ticagrelor reduced several secondary end points, including myocardial infarction alone (HR, 0.80; P=0.03), total mortality (HR, 0.82; P=0.05), and definite stent thrombosis (HR, 0.66; P=0.03). The risk of stroke, low in both groups, was higher with ticagrelor (1.7% versus 1.0%; HR, 1.63; 95% confidence interval, 1.07 to 2.48; P=0.02). Ticagrelor did not affect major bleeding (HR, 0.98; P=0.76). Conclusion-In patients with STE-ACS and planned primary percutaneous coronary intervention, the effects of ticagrelor were consistent with those observed in the overall PLATO trial.
  •  
12.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy