SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fioretos Thoas) "

Sökning: WFRF:(Fioretos Thoas)

  • Resultat 1-50 av 169
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abolhalaj, Milad, et al. (författare)
  • Transcriptional profiling demonstrates altered characteristics of CD8 + cytotoxic T-cells and regulatory T-cells in TP53-mutated acute myeloid leukemia
  • 2022
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 11:15, s. 3023-3032
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Acute myeloid leukemia (AML) patients have limited effect from T-cell-based therapies, such as PD-1 and CTLA-4 blockade. However, recent data indicate that AML patients with TP53 mutation have higher immune infiltration and other immunomodulatory therapies could thus potentially be effective. Here, we performed the transcriptional analysis of distinct T-cell subpopulations from TP53-mutated AML to identify gene expression signatures suggestive of altered functional properties.Methods: CD8+ cytotoxic T lymphocytes (CTLs), conventional helper T cells (Th), and regulatory T cells (Tregs) were sorted from peripheral blood of AML patients with TP53 mutation (n = 5) and healthy donors (n = 3), using FACS, and the different subpopulations were subsequently subjected to RNA-sequencing. Differentially expressed genes were identified and gene set enrichment analysis (GSEA) was performed to outline altered pathways and exhaustion status. Also, expression levels for a set of genes encoding established and emerging immuno-oncological targets were defined.Results: The results showed altered transcriptional profiles for each of the T-cell subpopulations from TP53-mutated AML as compared to control subjects. IFN-α and IFN-γ signaling were stronger in TP53-mutated AML for both CTLs and Tregs. Furthermore, in TP53-mutated AML as compared to healthy controls, Tregs showed gene expression signatures suggestive of metabolic adaptation to their environment, whereas CTLs exhibited features of exhaustion/dysfunction with a stronger expression of TIM3 as well as enrichment of a gene set related to exhaustion.Conclusions: The results provide insights on mechanisms underlying the inadequate immune response to leukemic cells in TP53-mutated AML and open up for further exploration toward novel treatment regimens for these patients.
  •  
2.
  •  
3.
  •  
4.
  • Andersson, Anna, et al. (författare)
  • Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations
  • 2005
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 19:6, s. 1042-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematologic malignancies are characterized by fusion genes of biological/clinical importance. Immortalized cell lines with such aberrations are today widely used to model different aspects of leukemogenesis. Using cDNA microarrays, we determined the gene expression profiles of 40 cell lines as well as of primary leukemias harboring 11q23/MLL rearrangements, t(1;19)[TCF3/PBX1], t(12;21)[ETV6/RUNX1], t(8;21)[RUNX1/CBFA2T1], t(8;14) [IGH@/MYC], t(8;14)[TRA@/MYC], t(9;22)[BCR/ABL1], t(10;11) [PICALM/MLLT10], t(15;17)[PML/RARA], or inv(16)[CBFB/MYH11]. Unsupervised classification revealed that hematopoietic cell lines of diverse origin, but with the same primary genetic changes, segregated together, suggesting that pathogenetically important regulatory networks remain conserved despite numerous passages. Moreover, primary leukemias cosegregated with cell lines carrying identical genetic rearrangements, further supporting that critical regulatory pathways remain intact in hematopoietic cell lines. Transcriptional signatures correlating with clinical subtypes/primary genetic changes were identified and annotated based on their biological/molecular properties and chromosomal localization. Furthermore, the expression profile of tyrosine kinase-encoding genes was investigated, identifying several differentially expressed members, segregating with primary genetic changes, which may be targeted with tyrosine kinase inhibitors. The identified conserved signatures are likely to reflect regulatory networks of importance for the transforming abilities of the primary genetic changes and offer important pathogenetic insights as well as a number of targets for future rational drug design.
  •  
5.
  • Andersson, Anna, et al. (författare)
  • Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types. METHODS: Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13). RESULTS: This study revealed that e.g., the t(12;21) [ETV6-RUNX1] subtype of ALL and the t(15;17) [PML-RARA] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/MLL subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to approximately 100 gene sets derived from normal and malignant tissues. CONCLUSIONS: This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.
  •  
6.
  • Andersson, Anna, et al. (författare)
  • Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status.
  • 2007
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 21:6, s. 1198-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene expression analyses were performed on 121 consecutive childhood leukemias (87 B-lineage acute lymphoblastic leukemias (ALLs), 11 T-cell ALLs and 23 acute myeloid leukemias (AMLs)), investigated during an 8-year period at a single center. The supervised learning algorithm k-nearest neighbor was utilized to build gene expression predictors that could classify the ALLs/AMLs according to clinically important subtypes with high accuracy. Validation experiments in an independent data set verified the high prediction accuracies of our classifiers. B-lineage ALLs with uncharacteristic cytogenetic aberrations or with a normal karyotype displayed heterogeneous gene expression profiles, resulting in low prediction accuracies. Minimal residual disease status (MRD) in T-cell ALLs with a high (40.1%) MRD at day 29 could be classified with 100% accuracy already at the time of diagnosis. In pediatric leukemias with uncharacteristic cytogenetic aberrations or with a normal karyotype, unsupervised analysis identified two novel subgroups: one consisting mainly of cases remaining in complete remission (CR) and one containing a few patients in CR and all but one of the patients who relapsed. This study of a consecutive series of childhood leukemias confirms and extends further previous reports demonstrating that global gene expression profiling provides a valuable tool for genetic and clinical classification of childhood leukemias.
  •  
7.
  • Andersson, Anna, et al. (författare)
  • Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies
  • 2001
  • Ingår i: Leukemia. - 1476-5551. ; 15:8, s. 1293-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • The MLL gene in chromosome band 11q23 is frequently rearranged in acute lymphoblastic and acute myeloid leukemias. To date, more than 50 different chromosomal regions are known to participate in translocations involving 11q23, many of which affect MLL. The pathogenetically important outcome of these rearrangements is most likely the creation of a fusion gene consisting of the 5' part of the MLL gene and the 3' end of the partner gene. Although abnormalities of the MLL gene as such are generally associated with poor survival, recent data suggest that the prognostic impact varies among the different fusion genes generated. Hence, detection of the specific chimeric gene produced is important for proper prognostication and clinical decision making. We have developed a paired multiplex reverse-transcriptase polymerase chain reaction analysis to facilitate a rapid and accurate detection of the most frequent MLL fusion genes in adult and childhood acute leukemias. To increase the specificity, two sets of primers were designed for each fusion gene, and these paired primer sets were run in parallel in two separate multiplex one-step PCR reactions. Using the described protocol, we were able to amplify successfully, in one single assay, the six clinically relevant fusion genes generated by the t(4;11)(q21;q23) [MLL/AF4], t(6;11)(q27;q23) [MLL/AF6], t(9;11)(p21-22;q23) [MLL/AF9], t(10;11)(p11-13;q23) [MLL/AF10], t(11;19)(q23;p13.1) [MLL/ELL], and t(11;19)(q23; p13.3) [MLL/ENL] in cell lines, as well as in patient material.
  •  
8.
  • Andersson, Anna, et al. (författare)
  • The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 192-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.
  •  
9.
  • Andreasson, Patrik, et al. (författare)
  • BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion
  • 1997
  • Ingår i: Genes, Chromosomes and Cancer. - 1045-2257. ; 20:3, s. 299-304
  • Tidskriftsartikel (refereegranskat)abstract
    • A BCR/ABL-negative chronic myeloid leukemia (CML) with t(12;14) (p12;q11-13) as the sole chromosomal abnormality was investigated by fluorescence in situ hybridization (FISH), which disclosed a cryptic insertion of ETV6 (previously called TEL), located at 12p12, into ABL at chromosome band 9q34. ETV6/ABL fusion was confirmed by RT-PCR, revealing that the first five exons of ETV6 were fused in frame with ABL at exon 2. Wild-type ETV6 was expressed, in accordance with the FISH results showing no deletion of the second ETV6 allele. ETV6/ABL chimeric transcripts have previously been reported in acute leukemias, but never before in CML. The present case suggests that ETV6/ABL positivity may constitute a new genetic subgroup of BCR-negative CML.
  •  
10.
  • Askmyr, Maria, et al. (författare)
  • Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells.
  • 2014
  • Ingår i: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34(+) cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML.
  •  
11.
  •  
12.
  • Askmyr, Maria, et al. (författare)
  • Transgenic expression of human cytokines in immunodeficient mice does not facilitate myeloid expansion of BCR-ABL1 transduced human cord blood cells
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Several attempts have been made to model chronic myeloid leukemia (CML) in a xenograft setting but expansion of human myeloid cells in immunodeficient mice has proven difficult to achieve. Lack of cross-reacting cytokines in the microenvironment of the mice has been proposed as a potential reason. In this study we have used NOD/SCID IL2–receptor gamma deficient mice expressing human SCF, IL-3 and GM-CSF (NSGS mice), that should be superior in supporting human, and particularly, myeloid cell engraftment, to expand BCR-ABL1 expressing human cells in order to model CML. NSGS mice transplanted with BCR-ABL1 expressing cells became anemic and had to be sacrificed due to illness, however, this was not accompanied by an expansion of human myeloid cells but rather we observed a massive expansion of human T-cells and macrophages/histiocytes. Importantly, control human cells without BCR-ABL1 expression elicited a similar reaction, although with a slight delay of disease induction, suggesting that while BCR-ABL1 contributes to the inflammatory reaction, the presence of normal human hematopoietic cells is detrimental for NSGS mice.
  •  
13.
  • Barbouti, Aikaterini, et al. (författare)
  • Clinical and genetic studies of ETV6/ABL1-positive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate.
  • 2003
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048. ; 122:1, s. 85-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Most chronic myeloid leukaemia (CML) patients are genetically characterized by the t(9;22)(q34;q11), generating the BCR/ABL1 fusion gene. However, a few CML patients with rearrangements of 9q34 and 12p13, leading to ETV6/ABL1 chimaeras, have also been reported. Here we describe the clinical and genetic response to imatinib mesylate treatment of an ETV6/ABL1-positive CML patient diagnosed in blast crisis (BC). A chronic phase was achieved after acute myeloid leukaemia induction therapy. Then, treatment with imatinib mesylate (600 mg/d) was initiated and the effect was assessed clinically as well as genetically, including by repeated interphase fluorescence in situ hybridization studies. Until d 71 of imatinib mesylate therapy, stable improvements in the clinical and laboratory features were noted, and the frequency of ABL1-rearranged peripheral blood cells decreased from 56% to 11%. At d 92, an additional t(12;13)(p12;q13), with the 12p breakpoint proximal to ETV6, was found. The patient relapsed into BC 126 d after the start of the imatinib mesylate treatment and succumbed to the disease shortly afterwards. No mutations in the tyrosine kinase domain of ABL1 of the ETV6/ABL1 fusion were identified in the second BC. However, whereas the ETV6/ABL1 expression was seemingly the same at diagnosis and at second BC, the expression of ETV6 was markedly lower at the second BC. This decreased expression of wild-type ETV6 may have been a contributory factor for the relapse.
  •  
14.
  • Barbouti, Aikaterini, et al. (författare)
  • Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression.
  • 2002
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 35:2, s. 127-137
  • Tidskriftsartikel (refereegranskat)abstract
    • During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC.
  •  
15.
  •  
16.
  •  
17.
  • Berglund, Eva Caroline, et al. (författare)
  • A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias
  • 2022
  • Ingår i: Frontiers in Medicine. - Lausanne, Switzerland : Frontiers Media SA. - 2296-858X. ; 9, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS), with the ability to provide comprehensive genomic information, have become the focal point of research interest as novel techniques that can support precision diagnostics in routine clinical care of patients with various cancer types, including hematological malignancies. This national multi-center study, led by Genomic Medicine Sweden, aims to evaluate whether combined application of WGS and WTS (WGTS) is technically feasible and can be implemented as an efficient diagnostic tool in patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In addition to clinical impact assessment, a health-economic evaluation of such strategy will be performed. Methods and Analysis: The study comprises four phases (i.e., retrospective, prospective, real-time validation, and follow-up) including approximately 700 adult and pediatric Swedish AML and ALL patients. Results of WGS for tumor (90×) and normal/germline (30×) samples as well as WTS for tumors only will be compared to current standard of care diagnostics. Primary study endpoints are diagnostic efficiency and improved diagnostic yield. Secondary endpoints are technical and clinical feasibility for routine implementation, clinical utility, and health-economic impact. Discussion: Data from this national multi-center study will be used to evaluate clinical performance of the integrated WGTS diagnostic workflow compared with standard of care. The study will also elucidate clinical and health-economic impacts of a combined WGTS strategy when implemented in routine clinical care. Clinical Trial Registration: [https://doi.org/10.1186/ISRCTN66987142], identifier [ISRCTN66987142].
  •  
18.
  • Billstrom, R, et al. (författare)
  • Poor survival in t(8;21) (q22;q22)-associated acute myeloid leukaemia with leukocytosis
  • 1997
  • Ingår i: European Journal of Haematology. - 1600-0609. ; 59:1, s. 47-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty-nine consecutive cases with a t(8;21)(q22;q22) in the bone marrow (BM) karyotype were retrospectively studied concerning clinical, morphological and cytogenetic data. All had been diagnosed as acute myeloid leukaemia (AML), 27 FAB subtype M2 and two M1, comprising 5% of all cytogenetically analysed AML during 18 yr. Auer rods were the most consistent t(8;21)-associated morphological finding and were demonstrated in 92% of the reviewed BM specimens, whereas BM eosinophilia was seen in only 24%. The median age was 53 yr, and 30% of the patients were > 60 yr old. Twenty-four patients had received induction chemotherapy; 22 of these (91%) entered a complete remission (CR). The median survival time in treated patients was 18 months. Leukocytosis at diagnosis (> or = 20 x 10(9)/1) was significantly (p = 0.01) associated with shorter survival time. All four children are still in first CR after 9-80 months. Seven cases (25%) developed granulocytic sarcomas, discovered either at diagnosis (n = 4) or at first relapse (n = 3). Secondary chromosome abnormalities were found in 62% of the cases, most often loss of a sex chromosome. The presence of such secondary aberrations did not correlate with any morphological or clinical characteristics, including survival. This first Scandinavian study of AML with t(8;21) corroborates the previous findings that these AMLs are characterized by distinct morphological features, a high frequency of CR and a striking tendency to develop extramedullary leukaemic manifestations. Leukocytosis at diagnosis indicates a less favourable prognosis.
  •  
19.
  • Borrow, Julian, et al. (författare)
  • Diagnosis of acute promyelocytic leukaemia by RT-PCR: detection of PML-RARA and RARA-PML fusion transcripts
  • 1992
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 82:3, s. 529-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute promyelocytic leukaemia (APL; AML M3) is identified by a unique t(15;17) translocation which fuses the PML gene to the retinoic acid receptor alpha gene (RARA). Reverse transcription coupled with the polymerase chain reaction (RT-PCR) has been used to develop a diagnostic test for APL based on the PML-RARA fusion message. Separate PCR assays were designed to amplify either PML-RARA (15q+ derived) or RARA-PML (17q- derived) chimaeric transcripts. PML-RARA transcripts were detected in every case from a series of 18 APL patients with cytogenetically confirmed t(15;17) translocations, whereas RARA-PML messages were detected in only 67% (12/18) of these patients. This suggests that it is the 15q+ derivative which mediates leukaemogenesis. Furthermore the PCR approach (or Southern analysis) may be used to identify in which of the alternative PML introns the breakpoint occurs; 52% of cases (15/29 patients) utilize a 5' PML intron and 48% the 3' intron (14/29 cases). Neither the choice of PML intron nor the expression of the 17q- derivative could be correlated with the microgranular variant of APL (M3V), overall survival rate, age, sex or presence of coagulopathy. Finally, the fusion message is undetectable in five remission samples. This indicates a possible use for RT-PCR in monitoring remission patients for evidence of relapse.
  •  
20.
  • Borrow, Julian, et al. (författare)
  • Molecular analysis of simple variant translocations in acute promyelocytic leukemia
  • 1994
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 9:4, s. 234-243
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cytogenetic abnormality in acute promyelocytic leukemia (APL; FAB M3) is a reciprocal translocation, t(15;17)(q22;q12), which serves to fuse the PML gene on chromosome 15 to the retinoic acid receptor alpha (RARA) gene on chromosome 17. A PML-RARA fusion message transcribed from the der(15) is thought to mediate leukemogenesis. Two APL patients with simple variants of this translocation, t(3;15)(q21;q22) and t(X;15)(p11;q22), have previously been reported who lack cytogenetic involvement of chromosome 17, although their breakpoint positions on chromosome 15 still suggest the involvement of the PML gene. Here we report on a combined analysis by molecular genetics and in situ hybridization of these two patients, in which we wanted to determine whether the PML gene has alternative fusion partners or whether cryptic rearrangement of the RARA locus has occurred instead. A cryptic involvement of RARA was demonstrated in both patients by a combination of Southern analysis, reverse transcription coupled to PCR (RT-PCR), and fluorescence in situ hybridization. The results indicate an absolute requirement for the rearrangement of the RARA gene in the pathogenesis of APL and underline the importance of RARA during normal myeloid differentiation.
  •  
21.
  • Callen, David F, et al. (författare)
  • New chromosomal rearrangement, t(12;22)(p13;q12), in acute nonlymphocytic leukemia
  • 1991
  • Ingår i: Cancer Genetics and Cytogenetics. - 0165-4608. ; 51:2, s. 255-258
  • Tidskriftsartikel (refereegranskat)abstract
    • The karyotype 47,XX, + 8,t(12;22)(p13;q12) was found at diagnosis in two patients with acute nonlymphocytic leukemia (ANLL). The bone marrow morphology of both patients corresponded to the M4 subtype of the French-American-British (FAB) classification. The translocation t(12;22) has not previously been reported as the sole structural aberration in ANLL.
  •  
22.
  • Chapellier, Marion, et al. (författare)
  • Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells
  • 2019
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 104:10, s. 2006-2016
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of cytokines in the bone marrow microenvironment promotes acute myeloid leukemia cell growth. Due to the complexity and low throughput of in vivo stem-cell based assays, studying the role of cytokines in the bone marrow niche in a screening setting is challenging. Herein, we developed an ex vivo cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive in vivo readout of leukemia-initiating capacity. With this approach, we assessed the effect of 114 murine cytokines on MLL-AF9 acute myeloid leukemia mouse cells and identified the tumor necrosis factor ligand superfamily member 13 (TNFSF13) as a positive regulator of leukemia-initiating cells. By using Tnfsf13-/- recipient mice, we confirmed that TNFSF13 supports leukemia-initiation also under physiological conditions. TNFSF13 was secreted by normal myeloid cells but not by leukemia mouse cells, suggesting that mature myeloid bone marrow cells support leukemia cells by secreting TNFSF13. TNFSF13 supported leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Moreover, TNFSF13 supported the growth and survival of several human myeloid leukemia cell lines, demonstrating that our findings translate to human disease. Taken together, using arrayed molecular barcoding, we identified a previously unrecognized role of TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells. The arrayed barcoded screening methodology is not limited to cytokines and leukemia, but can be extended to other types of ex vivo screens, where a multiplexed in vivo read-out of stem cell functionality is needed.
  •  
23.
  •  
24.
  • Davidsson, Josef, et al. (författare)
  • Relapsed childhood high hyperdiploid acute lymphoblastic leukemia : presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations.
  • 2010
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 24:5, s. 924-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Although childhood high hyperdiploid acute lymphoblastic leukemia is associated with a favorable outcome, 20% of patients still relapse. It is important to identify these patients already at diagnosis to ensure proper risk stratification. We have investigated 11 paired diagnostic and relapse samples with single nucleotide polymorphism array and mutation analyses of FLT3, KRAS, NRAS and PTPN11 in order to identify changes associated with relapse and to ascertain the genetic evolution patterns. Structural changes, mainly cryptic hemizygous deletions, were significantly more common at relapse (P<0.05). No single aberration was linked to relapse, but four deletions, involving IKZF1, PAX5, CDKN2A/B or AK3, were recurrent. On the basis of the genetic relationship between the paired samples, three groups were delineated: (1) identical genetic changes at diagnosis and relapse (2 of 11 cases), (2) clonal evolution with all changes at diagnosis being present at relapse (2 of 11) and (3) clonal evolution with some changes conserved, lost or gained (7 of 11), suggesting the presence of a preleukemic clone. This ancestral clone was characterized by numerical changes only, with structural changes and RTK-RAS mutations being secondary to the high hyperdiploid pattern.
  •  
25.
  •  
26.
  • Davidsson, Josef, et al. (författare)
  • The DNA methylome of pediatric acute lymphoblastic leukemia
  • 2009
  • Ingår i: HUMAN MOLECULAR GENETICS. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:21, s. 4054-4065
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, with high hyperdiploidy [51-67 chromosomes] and the t(12;21)(p13;q22) [ETV6/RUNX1 fusion] representing the most frequent abnormalities. Although these arise in utero, there is long latency before overt ALL, showing that additional changes are needed. Gene dysregulation through hypermethylation may be such an event; however, this has not previously been investigated in a detailed fashion. We performed genome-wide methylation profiling using bacterial artificial chromosome arrays and promoter-specific analyses of high hyperdiploid and ETV6/RUNX1-positive ALLs. In addition, global gene expression analyses were performed to identify associated expression patterns. Unsupervised cluster and principal component analyses of the chromosome-wide methylome profiles could successfully subgroup the two genetic ALL types. Analysis of all currently known promoter-specific CpG islands demonstrated that several B-cell- and neoplasia-associated genes were hypermethylated and underexpressed, indicating that aberrant methylation plays a significant leukemogenic role. Interestingly, methylation hotspots were associated with chromosome bands predicted to harbor imprinted genes and the tri-/tetrasomic chromosomes in the high hyperdiploid ALLs were less methylated than their disomic counterparts. Decreased methylation of gained chromosomes is a previously unknown phenomenon that may have ramifications not only for the pathogenesis of high hyperdiploid ALL but also for other disorders with acquired or constitutional numerical chromosome anomalies.
  •  
27.
  •  
28.
  • Davidsson, Josef, et al. (författare)
  • Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3
  • 2007
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 16:18, s. 2215-2225
  • Tidskriftsartikel (refereegranskat)abstract
    • Although gain of 1q occurs in 25% of Burkitt lymphomas (BLs) and 10% of pediatric high hyperdiploid acute lymphoblastic leukemias (ALLs), little is known about the origin, molecular genetic characteristics and functional outcome of dup(1q) in these disorders. Ten dup(1q)-positive BLs/ALLs were investigated by tiling resolution (32k) array CGH analysis, which revealed that the proximal breakpoints in all cases were near-centromeric, in eight of them clustering within a 1.4 Mb segment in 1q12-21.1. The 1q distal breakpoints were heterogeneous, being more distal in the ALLs than in the BLs. The minimally gained segments in the ALLs and BLs were 57.4 Mb [dup(1)(q22q32.3)] and 35 Mb [dup(1)(q12q25.2)], respectively. Satellite 11 DNA on 1q was not hypomethylated, as ascertained by Southern blot analyses of 15 BLs/ALLs with and without gain of 1q, indicating that aberrant methylation was not involved in the origin of dup(1q), as previously suggested for other neoplasms with 1q rearrangements. Global gene expression analyses revealed that five genes in the minimally 57.4 Mb gained region-B4GALT3, DAP3, RGS16, TMEM183A and UCK2-were significantly overexpressed in dup(1q)-positive ALLs compared with high hyperdiploid ALLs without dup(1q). The DAP3 and UCK2 genes were among the most overexpressed genes in the BL case with gain of 1q investigated. The DAP3 protein has been reported to be highly expressed in invasive glioblastoma multiforme cells, whereas expression of the UCK2 protein has been correlated with sensitivity to anticancer drugs. However, involvement of these genes in dup(1q)-positive ALLs and BLs has previously not been reported.
  •  
29.
  • Edsjö, Anders, et al. (författare)
  • Building a precision medicine infrastructure at a national level : The Swedish experience
  • 2023
  • Ingår i: Cambridge Prisms: Precision Medicine. - : Cambridge University Press. - 2752-6143. ; 1
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
  •  
30.
  • Edsjö, Anders, et al. (författare)
  • Current and emerging sequencing-based tools for precision cancer medicine
  • 2024
  • Ingår i: Molecular Aspects of Medicine. - 0098-2997 .- 1872-9452. ; 96
  • Forskningsöversikt (refereegranskat)abstract
    • Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
  •  
31.
  • Eriksson, Mia, et al. (författare)
  • Agonistic targeting of TLR1/TLR2 induces p38 MAPK-dependent apoptosis and NFκB-dependent differentiation of AML cells
  • 2017
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 1:23, s. 2046-2057
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) is associated with poor survival, and there is a strong need to identify disease vulnerabilities that might reveal new treatment opportunities. Here, we found that Toll-like receptor 1 (TLR1) and TLR2 are upregulated on primary AML CD34+CD38-cells relative to corresponding normal bone marrow cells. Activating the TLR1/TLR2 complex by the agonist Pam3CSK4 inMLL-AF9-driven human AML resulted in induction of apoptosis by p38 MAPK-dependent activation of Caspase 3 and myeloid differentiation in a NFκB-dependent manner. By using murineTrp53 -/- MLL-AF9AML cells, we demonstrate that p53 is dispensable for Pam3CSK4-induced apoptosis and differentiation. Moreover, murineAML1-ETO9a-driven AML cells also were forced into apoptosis and differentiation on TLR1/TLR2 activation, demonstrating that the antileukemic effects observed were not confined toMLL-rearranged AML. We further evaluated whether Pam3CSK4 would exhibit selective antileukemic effects. Ex vivo Pam3CSK4 treatment inhibited murine and human leukemia-initiating cells, whereas murine normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected. Consistent with these findings, primary human AML cells across several genetic subtypes of AML were more vulnerable for TLR1/TLR2 activation relative to normal human HSPCs. In theMLL-AF9AML mouse model, treatment with Pam3CSK4 provided proof of concept for in vivo therapeutic efficacy. Our results demonstrate that TLR1 and TLR2 are upregulated on primitive AML cells and that agonistic targeting of TLR1/TLR2 forces AML cells into apoptosis by p38 MAPK-dependent activation of Caspase 3, and differentiation by activating NFκB, thus revealing a new putative strategy for therapeutically targeting AML cells.
  •  
32.
  • Fields, James K., et al. (författare)
  • Antibodies targeting the shared cytokine receptor IL-1 receptor accessory protein invoke distinct mechanisms to block all cytokine signaling
  • Ingår i: Cell Reports. - 2211-1247.
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-1 (IL-1)-family cytokines are potent modulators of inflammation, coordinating a vast array of immunological responses across innate and adaptive immune systems. Dysregulated IL-1-family cytokine signaling, however, is involved in a multitude of adverse health effects, such as chronic inflammatory conditions, autoimmune diseases, and cancer. Within the IL-1 family of cytokines, six—IL-1α, IL-1β, IL-33, IL-36α, IL-36β, and IL-36γ—require the IL-1 receptor accessory protein (IL-1RAcP) as their shared co-receptor. Common features of cytokine signaling include redundancy of signaling pathways, sharing of cytokines and receptors, pleiotropy of the cytokines themselves, and multifaceted immune responses. Accordingly, targeting multiple cytokines simultaneously is an emerging therapeutic strategy and can provide advantages over targeting a single cytokine pathway. Here, we show that two monoclonal antibodies, CAN10 and 3G5, which target IL-1RAcP for broad blockade of all associated cytokines, do so through distinct mechanisms and provide therapeutic opportunities for the treatment of inflammatory diseases.
  •  
33.
  • Fioretos, Thoas, et al. (författare)
  • Chronic myeloid leukemia
  • 2015. - 4
  • Ingår i: Cancer Cytogenetics : Chromosomal and Molecular Genetic Aberrations of Tumor Cells - Chromosomal and Molecular Genetic Aberrations of Tumor Cells. - Chichester, UK : John Wiley & Sons, Ltd. - 9781118795538 - 9781118795569 ; , s. 153-174
  • Bokkapitel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is a clonal bone marrow (BM) disease characterized by neoplastic overproduction of, mainly, granulocytes. The treatment of CML has changed dramatically with the introduction of tyrosine kinase inhibitors (TKIs) targeting the product of the underlying cytogenetic and molecular lesion in CML. The Philadelphia chromosome was the first consistent neoplasia-associated chromosomal abnormality reported; its discovery was a milestone in cancer cytogenetics. Treatment of CML has changed dramatically over the last decades. The chfromosome t(9;22) (q34;q11) or its variant translocations (seen in 5-10%) are detected in the great majority of BM cells from patients with CML.The introduction of imatinib and other TKIs has dramatically improved the clinical outcome for CML patients, and today, the vast majority of patients receiving TKI treatment in chronic phase (CP) remain in complete hematologic and cytogenetic remission with low to undetectable BCR-ABL1 fusion transcripts.
  •  
34.
  • Fioretos, Thoas, et al. (författare)
  • Clinical impact of breakpoint position within M-bcr in chronic myeloid leukemia
  • 1993
  • Ingår i: Leukemia. - 1476-5551. ; 7:8, s. 1225-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed the M-bcr breakpoint position in 133 Philadelphia-positive chronic myeloid leukemia patients and correlated the findings with clinical, hematologic, and cytogenetic data. We also investigated the splicing pattern of the BCR-ABL mRNA in 30 patients, using reverse transcriptase PCR. No statistically significant differences were found between breakpoint position within M-bcr and clinical parameters at diagnosis, the karyotypic evolution pattern, or the leukemic phenotype during blast crisis. Furthermore, the breakpoint position within M-bcr did not correlate with the duration of chronic phase or survival time. When the splicing pattern of the BCR-ABL mRNA was compared with the results of the genomic breakpoint mapping, it was found that approximately 60% (8/14) of the patients with a 5' break expressed b2a2 fusion mRNA, whereas all patients (10/10) with a 3' break expressed b3a2 BCR-ABL mRNA.
  •  
35.
  • Fioretos, Thoas, et al. (författare)
  • Fusion of the BCR and the fibroblast growth factor receptor-1 (FGFR1) genes as a result of t(8;22)(p11;q11) in a myeloproliferative disorder: the first fusion gene involving BCR but not ABL
  • 2001
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 98:11, s. 558-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Constitutive activation of tyrosine kinases as a consequence of chromosomal translocations, forming fusion genes, plays an important role in the development of hematologic malignancies, in particular, myeloproliferative syndromes (MPSs). In this respect, the t(9;22)(q34;q11) that results in the BCR/ABL fusion gene in chronic myeloid leukemia is one of the best-studied examples. The fibroblast growth factor receptor 1 (FGFR1) gene at 8p11 encodes a transmembrane receptor tyrosine kinase and is similarly activated by chromosomal translocations, in which three alternative genes-ZNF198 at 13q12, CEP110 at 9q34, and FOP at 6q27-become fused to the tyrosine kinase domain of FGFR1. These 8p11-translocations are associated with characteristic morphologic and clinical features, referred to as "8p11 MPS." In this study, we report the isolation and characterization of a novel fusion gene in a hematologic malignancy with a t(8;22)(p11;q11) and features suggestive of 8p11 MPS. We show that the breakpoints in the t(8;22) occur within introns 4 and 8 of the BCR and FGFR1 genes, respectively. On the mRNA level, the t(8;22) results in the fusion of BCR exons 1-4 in-frame with the tyrosine kinase domain of FGFR1 as well as in the expression of a reciprocal FGFR1/BCR chimeric transcript. By analogy with data obtained from previously characterized fusion genes involving FGFR1 and BCR/ABL, it is likely that the oligomerization domain contributed by BCR is critical and that its dimerizing properties lead to aberrant FGFR1 signaling and neoplastic transformation.
  •  
36.
  •  
37.
  • Fioretos, Thoas, et al. (författare)
  • Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations
  • 1999
  • Ingår i: Blood. - 1528-0020. ; 94:1, s. 225-232
  • Tidskriftsartikel (refereegranskat)abstract
    • An isochromosome of the long arm of chromosome 17, i(17q), is the most frequent genetic abnormality observed during the disease progression of Philadelphia chromosome-positive chronic myeloid leukemia (CML), and has been described as the sole anomaly in various other hematologic malignancies. The i(17q) hence plays a presumably important pathogenetic role both in leukemia development and progression. This notwithstanding, the molecular consequences of this abnormality have not been investigated in detail. We have analyzed 21 hematologic malignancies (8 CML in blast crisis, 8 myelodysplastic syndromes [MDS], 2 acute myeloid leukemias, 2 chronic lymphocytic leukemias, and 1 acute lymphoblastic leukemia) with i(17q) by fluorescence in situ hybridization (FISH). Using a yeast artificial chromosome (YAC) contig, derived from the short arm of chromosome 17, all cases were shown to have a breakpoint in 17p. In 12 cases, the breaks occurred within the Smith-Magenis Syndrome (SMS) common deletion region in 17p11, a gene-rich region which is genetically unstable. In 10 of these 12 cases, we were able to further map the breakpoints to specific markers localized within a single YAC clone. Six other cases showed breakpoints located proximally to the SMS common deletion region, but still within 17p11, and yet another case had a breakpoint distal to this region. Furthermore, using chromosome 17 centromere-specific probes, it could be shown that the majority of the i(17q) chromosomes (11 of 15 investigated cases) were dicentric, ie, they contained two centromeres, strongly suggesting that i(17q) is formed through an intrachromosomal recombination event, and also implicating that the i(17q), in a formal sense, should be designated idic(17)(p11). Because i(17q) formation results in loss of 17p material, potentially uncovering the effect of a tumor suppressor on the remaining 17p, the occurrence of TP53 mutations was studied in 17 cases by sequencing the entire coding region. In 16 cases, no TP53 mutations were found, whereas one MDS displayed a homozygous deletion of TP53. Thus, our data suggest that there is no association between i(17q) and coding TP53 mutations, and that another tumor suppressor gene(s), located in proximity of the SMS common deletion region, or in a more distal location, is of pathogenetic importance in i(17q)-associated leukemia.
  •  
38.
  • Fioretos, Thoas, et al. (författare)
  • Mechanisms underlying neoplasia-associated genomic rearrangements
  • 2006
  • Ingår i: Genomic disorders: The Genomic basis of disease. - Totowa, NJ : Humana Press. - 9781588295590 ; , s. 327-337
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Neoplastic disorders are characterized by recurrent somatically acquired chromosomal aberrations that alter the structure and/or expression of a large number of genes. Most “cancer genes” discovered to date in human neoplasms have been identified through isolation of genes at the breakpoints of balanced chromosomal translocations. Although functional studies of such cancer-causing genes have demonstrated their causal role in tumorigenesis, the mechanisms underlying the formation of recurrent chromosomal changes in cancer remain enigmatic. Low-copy repeats (LCRs) are important mediators of erroneous meiotic recombination, resulting in constitutional chromosomal rearrangements. Recently, LCRs have been implicated in the formation of the frequent and characteristic neoplasia-associated chromosomal aberrations t(9;22)(q34;q1 1) and i(17q), suggesting that similar genome architecture features may play an important role in generating also other somatic chromosomal rearrangements.
  •  
39.
  • Fioretos, Thoas, et al. (författare)
  • Molecular analysis of Philadelphia-positive childhood chronic myeloid leukemia.
  • 1992
  • Ingår i: Leukemia. - 1476-5551. ; 6:7, s. 723-725
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakpoints in chromosome 22 were determined in five children with Philadelphia-positive chronic myeloid leukemia. All had rearrangements within the major breakpoint cluster region (M-bcr). Four patients had breakpoints in the 5' region of M-bcr (zones 1-3), whereas one had a rearrangement in the 3' region (zone 4). The patient with the 3' rearrangement was the only one to develop a lymphoid blast crisis; he also had a substantially longer survival (102 months) than the others (11-54 months).
  •  
40.
  • Fioretos, Thoas (författare)
  • Molecular Genetic Studies of Ph-positive Leukemias and the BCR and ABL Genes
  • 1996
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the present thesis molecular genetic methods were used to address different biological and clinical aspects of Philadelphia (Ph) chromosome-positive leukemias and the BCR and ABL genes. In the first study, children with Ph-positive chronic myeloid leukemia (CML) were found to have essentially the same breakpoint locations in BCR as adults, a pattern which differs from the one seen in Ph-positive acute lymphoid leukemia (ALL). In the second study, the breakpoint position within the major breakpoint cluster region (M-bcr) of the BCR gene was determined in 133 Ph-positive CML patients. No correlation was found between the breakpoint site and different clinical and/or hematologic parameters, including duration of the chronic phase and survival time. In the third study, the CRK proto-oncogene was localized to chromosome band 17p13, a segment frequently deleted during disease progression in CML, offering a new candidate gene to be investigated for its possible involvement in the disease progression. In the fourth study, it was shown that both BCR genes are expressed in the peripheral blood of healthy individuals, making it unlikely that imprinting would account for the previously reported parental-specific involvement of chromosomes 9 and 22 in the t(9;22). The identification of the adaptor protein CRKL as the major phosphorylated protein in the CML cell line K562 in the fifth study, and the demonstration that BCR/ABL and ABL bind to and phosphorylate CRKL, indicate that CRKL is likely to play a biologically important role in the development of Ph-positive leukemias. In the sixth study, first steps were taken to evaluate the effects of interferon-alfa treatment on a transgenic mouse model for Ph-positive ALL. No prolonged survival or altered disease pattern was observed. In the final study, RNA in situ hybridization was used in an attempt to further elucidate the significance of the high expression of BCR in the brain. It was found that the expression of BCR was localized to highly specialized brain regions, reflecting a potentially interesting, yet presently poorly understood, function of BCR in the brain.
  •  
41.
  • Fioretos, Thoas, et al. (författare)
  • Molekylär medicin: Molekylärgenetisk metodik avslöjar mekanismerna bakom tumörutveckling
  • 1991
  • Ingår i: Läkartidningen. - 0023-7205. ; 88:32-33, s. 2597-2602
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid advance in our understanding of cancer biology during the past decade, as exemplified by the discovery of oncogenes and tumour suppressor genes and their interactions in tumourigenesis, has revolutionized cancer research. This rapid progress has largely been due to the use of molecular genetics techniques. However, despite the wealth of available information as to the genetic basis of carcinogenesis, its clinical applicability remains limited. The review is a summary of the general principles and methods currently used to detect genetic alterations in neoplastic cells, with special emphasis on clinical applications.
  •  
42.
  • Fioretos, Thoas, et al. (författare)
  • No evidence for genomic imprinting of the human BCR gene
  • 1994
  • Ingår i: Blood. - 1528-0020. ; 83:12, s. 3441-3444
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemias and 5% to 20% of acute lymphoid leukemias are characterized by the Philadelphia chromosome, a reciprocal chromosomal translocation, t(9;22)(q34;q11), generating BCR-ABL and ABL-BCR fusion genes. Cytogenetic studies have recently shown a preferential involvement of the paternally derived chromosome 9 and the maternally derived chromosome 22 in this translocation, indicating that imprinting might be involved in the formation or selection of the translocation. In this study, we have identified a BamHI polymorphism in the coding region of BCR exon 1, allowing us to investigate whether both BCR alleles are transcribed. By using a reverse transcriptase-polymerase chain reaction assay, we show that both BCR alleles are expressed in the peripheral blood cells of normal individuals.
  •  
43.
  • Fioretos, Thoas, et al. (författare)
  • Regional localization and developmental expression of the BCR gene in rodent brain
  • 1995
  • Ingår i: Cellular & molecular biology research. - 0968-8773. ; 41:2, s. 97-102
  • Tidskriftsartikel (refereegranskat)abstract
    • The BCR gene is implicated in the development of Ph-positive leukemia through its fusion with the nonreceptor tyrosine kinase gene ABL. The normal 160 kDa Bcr protein has several functional domains, and recently one specific role for Bcr was established in the regulation of respiratory burst activity in white blood cells. Bcr expression levels are relatively constant throughout mouse development until adulthood in brain and in hematopoietic tissues, a pattern that is distinctly different from that of the functionally related n-chimerin gene. In the present study, RNA in situ hybridization was used to explore the normal cellular function of Bcr in rodent brain and hematopoietic organs. The data pinpoint the high bcr expression in the brain to the hippocampal pyramidal cell layer and the dentate gyrus, and to the piriform cortex and the olfactory nuclei, reflecting a potentially interesting function for Bcr in these highly specialized brain regions.
  •  
44.
  • Fioretos, Thoas, et al. (författare)
  • Standpoint on imprinting of BCR and ABL
  • 1995
  • Ingår i: Leukemia. - 1476-5551. ; 9:4, s. 743-744
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytogenetic studies of Ph-positive leukemic patients and their parents have indicated that chromosome 22 involved in the formation of the t(9;22) is of maternal origin, whereas chromosome 9 is preferentially of paternal origin. These data have suggested that the two genes BCR and ABL, which become fused through the translocation, might be imprinted, ie expressed in a parental-specific manner. Recent molecular genetic studies however, have shown that BCR and ABL are expressed on both alleles and that the maternal and paternal ABL genes contribute equally often to the BCR-ABL fusion messenger. The findings make imprinting of these genes unlikely as an explanatory model and necessitate a combined cytogenetic and molecular genetic study.
  •  
45.
  • Fioretos, Thoas (författare)
  • Why B(-)other? About the gap of unknowns in ALL
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 139:24, s. 3455-3457
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
46.
  • Gunnarsson, Rebeqa, et al. (författare)
  • Mutation, methylation, and gene expression profiles in dup(1q)-positive pediatric B-cell precursor acute lymphoblastic leukemia
  • 2018
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 32:10, s. 2117-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput sequencing was applied to investigate the mutation/methylation patterns on 1q and gene expression profiles in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL) with/without (w/wo) dup(1q). Sequencing of the breakpoint regions and all exons on 1q in seven dup(1q)-positive cases revealed non-synonymous somatic single nucleotide variants (SNVs) in BLZF1, FMN2, KCNT2, LCE1C, NES, and PARP1. Deep sequencing of these in a validation cohort w (n = 17)/wo (n = 94) dup(1q) revealed similar SNV frequencies in the two groups (47% vs. 35%; P = 0.42). Only 0.6% of the 36,259 CpGs on 1q were differentially methylated between cases w (n = 14)/wo (n = 13) dup(1q). RNA sequencing of high hyperdiploid (HeH) and t(1;19)(q23;p13)-positive cases w (n = 14)/wo (n = 52) dup(1q) identified 252 and 424 differentially expressed genes, respectively; only seven overlapped. Of the overexpressed genes in the HeH and t(1;19) groups, 23 and 31%, respectively, mapped to 1q; 60-80% of these encode nucleic acid/protein binding factors or proteins with catalytic activity. We conclude that the pathogenetically important consequence of dup(1q) in BCP ALL is a gene-dosage effect, with the deregulated genes differing between genetic subtypes, but involving similar molecular functions, biological processes, and protein classes.
  •  
47.
  •  
48.
  • Hakansson, P., et al. (författare)
  • Establishment and phenotypic characterization of human U937 cells with inducible P210 BCR/ABL expression reveals upregulation of CEACAM1 (CD66a)
  • 2004
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 18:3, s. 538-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is characterized by the expression of the P210 BCR/ABL fusion protein. The molecular mechanisms behind this oncogene-mediated hematological disease are, however, not fully understood. Here, we describe the establishment and phenotypic characterization of U937 cells in which P210 BCR/ABL can be conditionally expressed using tetracycline. The induction of BCR/ABL in the obtained clones resulted in a rapid phosphorylation of the STAT1, STAT3 and STAT5 molecules, consistent with the findings in other model systems. Phenotypic characterization of the clones revealed that BCR/ABL induces a slight decrease in the proliferation and viability, without a marked effect on cell cycle distribution, the rate of apoptosis or on cellular differentiation, as judged by several cell surface markers and capacity to reduce nitro blue tetrazolium. Interestingly, BCR/ABL was found to upregulate the expression of carcinoembryonic-related antigen (CEA)CAM1 (CD66a), which is a plasma membrane-linked glycoprotein belonging to the CEAs and involved in signal transduction and cellular adhesion. The expression of CEACAM1 was reversible upon imatinib treatment in BCR/ABL-expressing U937 cells as well as in BCR/ABL-positive K562 cells. The established cell lines may prove useful in further modeling and dissection of BCR/ABL-induced leukemogenesis.
  •  
49.
  • Hansen, Nils, et al. (författare)
  • SOCS2 is dispensable for BCR/ABL1-induced chronic myeloid leukemia-like disease and for normal hematopoietic stem cell function.
  • 2013
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 27, s. 130-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine signaling and is highly expressed in primary bone marrow (BM) cells from patients with chronic myeloid leukemia (CML). However, it has not been established whether SOCS2 is involved in CML, caused by the BCR/ABL1 fusion gene, or important for normal hematopoietic stem cell (HSC) function. In this study, we demonstrate that although Socs2 was found to be preferentially expressed in long-term HSCs, Socs2-deficient HSCs were indistinguishable from wild-type HSCs when challenged in competitive BM transplantation experiments. Furthermore, by using a retroviral BCR/ABL1-induced mouse model of CML, we demonstrate that SOCS2 is dispensable for the induction and propagation of the disease, suggesting that the SOCS2-mediated feedback regulation of the JAK/STAT pathway is deficient in BCR/ABL1-induced CML.Leukemia advance online publication, 24 July 2012; doi:10.1038/leu.2012.169.
  •  
50.
  • Heim, Sverre, et al. (författare)
  • Acute myelomonocytic leukemia with inv(16)(p13q22) complicating Philadelphia chromosome positive chronic myeloid leukemia
  • 1992
  • Ingår i: Cancer Genetics and Cytogenetics. - 0165-4608. ; 59:1, s. 35-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The reciprocal translocation (9;22)(q34;q11) is highly characteristic of chronic myeloid leukemia (CML) and the pericentric inversion inv(16)(p13q22) is almost only found in acute nonlymphocytic leukemia of the myelomonocytic subtype (ANLL M4). Only twice before have an inv(16) and a t(9;22) been found in the same cells, and both times the patients seemed to have de novo ANLL M4. We describe the case of a 21-year-old man who in July 1986 presented with a clinically and hematologically classic chronic phase CML. Treatment with busulfan led to no improvement; instead in September 1986 he developed blast crisis with ANLL M4Eo morphology. He was now cytogenetically examined and the karyotype 45,X,-Y,t(9;22)(q34;q11),inv(16)(p13q22) was found. Southern blot analysis of the bone marrow DNA sampled at this time revealed a standard rearrangement in the 3' end of the M-bcr. Intensive cytostatic treatment caused cytopenia followed by complete hematologic, clinical, and cytogenetic reversal to chronic phase CML, so that in January 1987 the bone marrow karyotype was 46,XY,t(9;22)(q34;q11). Persistent splenomegaly was treated with splenectomy, and a chloroma of the skin was removed by irradiation. In March 1987 he received an allogeneic bone marrow transplant. Since then his only medical problem has been mild graft-versus-host disease; he is well and is working full time as a blacksmith.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 169
Typ av publikation
tidskriftsartikel (144)
konferensbidrag (10)
forskningsöversikt (10)
bokkapitel (3)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (162)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Fioretos, Thoas (169)
Johansson, Bertil (62)
Lilljebjörn, Henrik (52)
Mitelman, Felix (42)
Lassen, Carin (31)
Rissler, Marianne (29)
visa fler...
Paulsson, Kajsa (23)
Andersson, Anna (22)
Richter, Johan (21)
Höglund, Mattias (17)
Ågerstam, Helena (16)
Järås, Marcus (15)
Strömbeck, Bodil (14)
Olofsson, Tor (13)
Behrendtz, Mikael (13)
Hansen, Nils (12)
Sandén, Carl (11)
Heldrup, Jesper (11)
Orsmark-Pietras, Chr ... (11)
Cavelier, Lucia (10)
Rosenquist, Richard (10)
Askmyr, Maria (10)
Landberg, Niklas (10)
Juliusson, Gunnar (9)
Heim, Sverre (9)
von Palffy, Sofia (9)
Panagopoulos, Ioanni ... (9)
Biloglav, Andrea (8)
Lindgren, David (8)
Barbany, Gisela (8)
Davidsson, Josef (8)
Cammenga, Jörg (8)
OLSSON, LINDA (8)
Castor, Anders (8)
Johnels, Petra (8)
Forestier, Erik (7)
Borg, Åke (7)
Ehinger, Mats (7)
Billström, Rolf (7)
Högberg, Carl (7)
Isaksson, Margareth (7)
Mustjoki, Satu (7)
Heidenblad, Markus (7)
Nilsson, Björn (6)
Wirta, Valtteri (6)
Fontes, Magnus (6)
Garwicz, Stanislaw (6)
Ehrencrona, Hans (6)
Porkka, Kimmo (6)
Mandahl, Nils (6)
visa färre...
Lärosäte
Lunds universitet (162)
Linköpings universitet (28)
Karolinska Institutet (28)
Uppsala universitet (13)
Umeå universitet (8)
Kungliga Tekniska Högskolan (8)
visa fler...
Göteborgs universitet (6)
Örebro universitet (3)
Chalmers tekniska högskola (3)
Malmö universitet (1)
visa färre...
Språk
Engelska (165)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (162)
Naturvetenskap (9)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy