SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fjeldsa J) "

Search: WFRF:(Fjeldsa J)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
3.
  • Alström, Per, et al. (author)
  • Comprehensive molecular phylogeny of the grassbirds and allies (Locustellidae) reveals extensive non-monophyly of traditional genera, and a proposal for a new classification
  • 2018
  • In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 127, s. 367-375
  • Journal article (peer-reviewed)abstract
    • The widespread Old World avian family Locustellidae ('grassbirds and allies') comprises 62 extant species in 11 genera. In the present study, we used one mitochondrial and, for most species, four nuclear loci to infer the phylogeny of this family. We analysed 59 species, including the five previously unsampled genera plus two genera that had not before been analysed in a densely sampled dataset. This study revealed extensive disagreement with current taxonomy; the genera Bradypterus, Locustella, Megalurus, Megalurulus and Schoenicola were all found to be non-monophyletic. Non-monophyly was particularly pronounced for Megalurus, which was widely scattered across the tree. Three of the five monotypic genera (Amphilais, Buettikoferella and Malia) were nested within other genera; one monotypic genus (Chaetornis) formed a Glade with one of the two species of Schoenicola; whereas the position of the fifth monotypic genus (Elaphrornis) was unresolved. Robsonius was confirmed as sister to the other genera. We propose a phylogenetically informed revision of genus-level taxonomy, including one new generic name. Finally, we highlight several non-monophyletic species complexes and deep intra-species divergences that point to conflict in taxonomy and suggest an underestimation of current species diversity in this group.
  •  
4.
  • Liu, B. Y., et al. (author)
  • Explosive radiation and spatial expansion across the cold environments of the Old World in an avian family
  • 2017
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 7:16, s. 6346-6357
  • Journal article (peer-reviewed)abstract
    • Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino-Himalayan Mountains or these mountains and Central Asia-Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid-Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo-/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacialperiods, followed by fragmentation during interglacials-contrary to the usual view that glacial periods resulted mainly in fragmentations.
  •  
5.
  • Zhang, Guojie, et al. (author)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Journal article (peer-reviewed)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  •  
6.
  • Antonelli, Alexandre, 1978, et al. (author)
  • Geological and climatic influences on mountain biodiversity
  • 2018
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:10
  • Journal article (peer-reviewed)abstract
    • Mountains are key features of the Earth's surface and host a substantial proportion of the world's species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of terrestrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere-lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.
  •  
7.
  • Cibois, A., et al. (author)
  • Comprehensive phylogeny of the laughingthrushes and allies (Aves, Leiothrichidae) and a proposal for a revised taxonomy
  • 2018
  • In: Zoologica Scripta. - : Wiley. - 0300-3256 .- 1463-6409. ; 47:4, s. 428-440
  • Journal article (peer-reviewed)abstract
    • DNA phylogenies have gradually shed light on the phylogenetic relationships of the large babbler group. We focus in this study on the family Leiothrichidae (laughingthrushes and song babblers), which represents the largest clade of babblers in terms of species diversity. Our phylogeny includes all genera and 82% of the recognized species, using mitochondrial and nuclear loci. The sister group to Leiothrichidae is composed of the Pellorneidae (jungle babblers) plus the genus Alcippe. Within Leiothrichidae, four strongly supported primary clades (A-D) are recovered. Clade A includes Grammatoptila, Laniellus and Cutia. Clade B includes a large group of laughingthrushes, all of them classified in Trochalopteron. In Clade C, the two laughingthrushes endemic to southern India, T.fairbanki and T.cachinnans, which have recently been proposed to be placed in the newly erected genus Montecincla, form a sister clade to the group comprising the song babblers (Lioptila, Leiothrix, Heterophasia, Minla, Liocichla, Actinodura, Chrysominla, Siva, and Sibia). Clade D includes the African babblers (Turdoides, Phyllanthus, Kupeornis), Asian relatives (Argya, Acanthoptila, Chatarrhaea) and all remaining laughingthrushes (Garrulax). The time estimates suggest that the early diversification of the Leiothrichidae occurred in the mid-Miocene, a period that corresponds to the diversification of many passerine groups in Asia. A revised taxonomic classification of the family is proposed in the light of these results.
  •  
8.
  • Jarvis, Erich D., et al. (author)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Journal article (peer-reviewed)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view