SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flick Ramon) "

Sökning: WFRF:(Flick Ramon)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flick, Kirsten, et al. (författare)
  • Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments
  • 2004
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 78:21, s. 11726-11738
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the variable portion of the noncoding regions (NCRs) of the three Bunyaviridae RNA segments (L, M, S) in transcription, replication, and packaging was studied using the recently developed plasmid-driven RNA polymerase I minigenome system for Uukuniemi (UUK) virus, genus Phlebovirus (11), as a model. Comparison of the different segments showed that all NCRs were sufficient to mediate transcription/replication of a minigenome but demonstrated decreased promoter strength in the order M > L > S. Chimeric minigenomes with flanking NCRs from different genome segments revealed that the number of total base pairs within the inverted, partially complementary ends was important for transcription and replication. Point mutations increasing the base-pairing potential produced increased reporter expression, indicating that complementarity between the 5' and 3' ends is crucial for promoter activity. The role of the intergenic region (IGR) located between the two open reading frames of the ambisense UUK virus S segment was analyzed by inserting this sequence element downstream of the reporter genes. The presence of the IGR was found to enhance reporter expression, demonstrating that efficient transcription termination, regulated by the IGR, is important for optimal minigenome mRNA translation. Finally, genome packaging efficacy varied for different NCRs and was strongest for L followed by M and S. Strong reporter gene activity was still observed after seven consecutive cell culture passages, indicating a selective rather than random genome-packaging mechanism. In summary, our results demonstrate that the NCRs from all three segments contain the necessary signals to initiate transcription and replication as well as packaging. Based on promoter strength, M-segment NCRs may be the preferred choice for the development of reverse genetics and minigenome rescue systems for bunyaviruses.
  •  
2.
  • Flick, Ramon, et al. (författare)
  • Reverse genetics for crimean-congo hemorrhagic fever virus.
  • 2003
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 77:10, s. 5997-6006
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread geographical distribution of Crimean-Congo hemorrhagic fever (CCHF) virus (more than 30 countries) and its ability to produce severe human disease with high mortality rates (up to 60%) make CCHF a major public health concern worldwide. We describe here the successful establishment of a reverse genetics technology for CCHF virus, a member of the genus Nairovirus, family BUNYAVIRIDAE: The RNA polymerase I (pol I) system was used to generate artificial viral RNA genome segments (minigenomes), which contained different reporter genes in antisense (virus RNA) or sense (virus-complementary RNA) orientation flanked by the noncoding regions of the CCHF virus S segment. Reporter gene expression was observed in different eukaryotic cell lines following transfection and subsequent superinfection with CCHF virus, confirming encapsidation, transcription, and replication of the pol I-derived minigenomes. The successful transfer of reporter gene activity to fresh cells demonstrated the generation of recombinant CCHF viruses, thereby confirming the packaging of the pol I-derived minigenomes into progeny viruses. The system offers a unique opportunity to study the biology of nairoviruses and to develop therapeutic and prophylactic measures against CCHF infections. In addition, we demonstrated for the first time that the human pol I system can be used to develop reverse genetics approaches for viruses in the family BUNYAVIRIDAE: This is important since it might facilitate the manipulation of bunyaviruses with cell and host tropisms restricted to primates.
  •  
3.
  • Flick, Ramon, et al. (författare)
  • Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance
  • 2002
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 76:21, s. 10849-10860
  • Tidskriftsartikel (refereegranskat)abstract
    • We have performed an extensive mutational analysis of the proposed promoter region of the phlebovirus Uukuniemi (UUK), a member of the Bunyaviridae family. This was achieved by using a recently developed RNA polymerase I (Pol I)-driven reverse genetics system (R. Flick and R. F. Pettersson, J. Virol. 75:1643-1655, 2001). Chimeric cDNAs containing the coding region for the reporter chloramphenicol acetyltransferase (CAT) in an antisense orientation were flanked by the 5'- and 3'-terminal nontranslated regions of the UUK virus-sense RNA (vRNA) derived from the medium-sized (M) RNA segment. The chimeric cDNAs (Pol I expression cassettes) were cloned between the murine Pol I promoter and terminator, and the plasmids were transfected into BHK-21 cells. CAT activity was determined after cotransfection with viral expression plasmids encoding the RNA-dependent RNA polymerase (L) and the nucleoprotein (N) or, alternatively, after superinfection with UUK virus helper virus. Using oligonucleotide-directed mutagenesis, single point mutations (substitutions, deletions, and insertions) were introduced into the viral promoter region. Differences in CAT activities were interpreted to reflect the efficiency of mRNA transcription from the mutated promoter and the influence on RNA replication. Analysis of 109 mutants allowed us to define two important regulatory regions within the proximal promoter region (site A, positions 3 to 5 and 2 to 4; site B, positions 8 and 8, where underlined nucleotides refer to positions in the vRNA 3' end). Complementary double nucleotide exchanges in the proximal promoter region, which maintained the possibility for base pairing between the 5' and 3' ends, demonstrated that nucleotides in the two described regions are essential for viral polymerase recognition in a base-specific manner. Thus, mere preservation of panhandle base pairing between the 5' and 3' ends is not sufficient for promoter activity. In conclusion, we have been able to demonstrate that both ends of the M RNA segment build up the promoter region and are involved in the specific recognition by the viral polymerase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy