SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fogelstrand L) "

Sökning: WFRF:(Fogelstrand L)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pilheden, M., et al. (författare)
  • Duplex Sequencing Uncovers Recurrent Low-frequency Cancer-associated Mutations in Infant and Childhood KMT2A-rearranged Acute Leukemia
  • 2022
  • Ingår i: Hemasphere. - : Ovid Technologies (Wolters Kluwer Health). - 2572-9241. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3(D835H) or NRAS(G13D/G12S) mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.
  •  
2.
  •  
3.
  • Tsiantoulas, D., et al. (författare)
  • APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 597, s. 92-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide(1). The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)(2) and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall(2). A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs(3), but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.
  •  
4.
  •  
5.
  •  
6.
  • Chou, M-Y, et al. (författare)
  • Oxidation-specific epitopes are important targets of innate immunity.
  • 2008
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 263:5, s. 479-88
  • Forskningsöversikt (refereegranskat)abstract
    • During the oxidation of LDL, a central pathophysiological component of atherogenesis, a wide variety of chemical and physical changes occur leading to the generation of oxidation-specific neoepitopes. These epitopes are not only immunogenic, leading to adaptive humoral responses, but are also a prominent target of multiple arcs of innate immunity. The pattern recognition receptors (PRRs) of innate immunity are germ line encoded, conserved by natural selection, and bind to pathogen-associated molecular patterns (PAMPs) common on multiple structures. However, it is not intuitive as to why they should recognize oxidation-specific neoepitopes. Yet it is clear that multiple macrophage scavenger receptors, which are classic PRRs, recognize oxidation-specific epitopes, such as those found on oxidized LDL (OxLDL). Other innate proteins, such as C-reactive protein, also bind to OxLDL. Natural antibodies (NAbs), the humoral arc of innate immunity, provide a nonredundant role in the first line of defence against pathogens, but are also believed to provide important homeostatic house-keeping functions against self-antigens. Our work demonstrates that oxidation-specific epitopes, as found on OxLDL, are a major target of NAbs. In this review, we will discuss the specific example of the prototypic NAb T15/E06, which is increased in atherosclerotic mice and mediates atheroprotection, and discuss the potential role of NAbs in atherogenesis, and in inflammation in general. We also review data that oxidation-specific epitopes are generated whenever cells undergo programmed cell death, forming a common set of PAMPs recognized by oxidation-specific PRRs on macrophages, NAbs and innate proteins. We present the hypothesis that oxidation-specific epitopes on apoptotic cells exerted evolutionary pressure for the conservation of these PRRs and also serve to maintain the expansion of a substantial proportion of NAbs directed to these stress-induced self-antigens.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Modvig, S, et al. (författare)
  • Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia
  • 2019
  • Ingår i: Leukemia. - : Nature Publishing Group. - 0887-6924 .- 1476-5551. ; 33:6, s. 1324-1336
  • Tidskriftsartikel (refereegranskat)abstract
    • Minimal residual disease (MRD) measured by PCR of clonal IgH/TCR rearrangements predicts relapse in T-cell acute lymphoblastic leukemia (T-ALL) and serves as risk stratification tool. Since 10% of patients have no suitable PCR-marker, we evaluated flowcytometry (FCM)-based MRD for risk stratification. We included 274 T-ALL patients treated in the NOPHO-ALL2008 protocol. MRD was measured by six-color FCM and real-time quantitative PCR. Day 29 PCR-MRD (cut-off 10-3) was used for risk stratification. At diagnosis, 93% had an FCM-marker for MRD monitoring, 84% a PCR-marker, and 99.3% (272/274) had a marker when combining the two. Adjusted for age and WBC, the hazard ratio for relapse was 3.55 (95% CI 1.4-9.0, p = 0.008) for day 29 FCM-MRD ≥ 10-3 and 5.6 (95% CI 2.0-16, p = 0.001) for PCR-MRD ≥ 10-3 compared with MRD < 10-3. Patients stratified to intermediate-risk therapy on day 29 with MRD 10-4-<10-3 had a 5-year event-free survival similar to intermediate-risk patients with MRD < 10-4 or undetectable, regardless of method for monitoring. Patients with day 15 FCM-MRD < 10-4 had a cumulative incidence of relapse of 2.3% (95% CI 0-6.8, n = 59). Thus, FCM-MRD allows early identification of patients eligible for reduced intensity therapy, but this needs further studies. In conclusion, FCM-MRD provides reliable risk prediction for T-ALL and can be used for stratification when no PCR-marker is available.
  •  
11.
  • Rezayee, F., et al. (författare)
  • Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia
  • 2023
  • Ingår i: FRONTIERS IN ONCOLOGY. - : Frontiers Media SA. - 2234-943X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods.Methods For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL.Results Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions.Discussion The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.
  •  
12.
  • Rosso, Aldana, et al. (författare)
  • Is there an impact of measurable residual disease as assessed by multiparameter flow cytometry on survival of AML patients treated in clinical practice? A population-based study
  • 2021
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 62:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Swedish national guidelines for treatment of acute myeloid leukemia (AML) recommend analysis of measurable residual disease (MRD) by multiparameter flow cytometry (MFC) in bone marrow in the routine clinical setting. The Swedish AML registry contains such MRD data in AML patients diagnosed 2011–2019. Of 327 patients with AML (non-APL) with MRD-results reported in complete remission after two courses of intensive chemotherapy 229 were MRD-negative (70%), as defined by <0.1% cells with leukemia-associated immunophenotype in the bone marrow. MRD-results were reported to clinicians in real time. Multivariate statistical analysis adjusted for known established risk factors did not indicate an association between MFC-MRD and overall survival (HR: 1.00 [95% CI 0.61, 1.63]) with a median follow-up of 2.7 years. Knowledge of the importance of MRD status by clinicians and individualized decisions could have ameliorated the effects of MRD as an independent prognostic factor of overall survival. © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  •  
13.
  •  
14.
  • Benetton, M., et al. (författare)
  • Molecular Measurable Residual Disease Assessment before Hematopoietic Stem Cell Transplantation in Pediatric Acute Myeloid Leukemia Patients: A Retrospective Study by the I-BFM Study Group
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell transplantation (HSCT) is a curative post-remission treatment in patients with acute myeloid leukemia (AML), but relapse after transplant is still a challenging event. In recent year, several studies have investigated the molecular minimal residual disease (qPCR-MRD) as a predictor of relapse, but the lack of standardized protocols, cut-offs, and timepoints, especially in the pediatric setting, has prevented its use in several settings, including before HSCT. Here, we propose the first collaborative retrospective I-BFM-AML study assessing qPCR-MRD values in pretransplant bone marrow samples of 112 patients with a diagnosis of AML harboring t(8;21)(q22; q22)RUNX1::RUNX1T1, or inv(16)(p13q22)CBFB::MYH11, or t(9;11)(p21;q23)KMT2A::MLLT3, or FLT3-ITD genetic markers. We calculated an ROC cut-off of 2.1 x 10(-4) that revealed significantly increased OS (83.7% versus 57.1%) and EFS (80.2% versus 52.9%) for those patients with lower qPCR-MRD values. Then, we partitioned patients into three qPCR-MRD groups by combining two different thresholds, 2.1 x 10(-4) and one lower cut-off of 1 x 10(-2), and stratified patients into low-, intermediate-, and high-risk groups. We found that the 5-year OS (83.7%, 68.6%, and 39.2%, respectively) and relapse-free survival (89.2%, 73.9%, and 67.9%, respectively) were significantly different independent of the genetic lesion, conditioning regimen, donor, and stem cell source. These data support the PCR-based approach playing a clinical relevance in AML transplant management.
  •  
15.
  •  
16.
  • Chou, Meng-Yun, et al. (författare)
  • Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans.
  • 2009
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 119:5, s. 1335-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.
  •  
17.
  • Durand, Caylib A, et al. (författare)
  • Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses.
  • 2009
  • Ingår i: Journal of immunology (Baltimore, Md. : 1950). - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 183:9, s. 5673-84
  • Tidskriftsartikel (refereegranskat)abstract
    • B-1 and marginal zone (MZ) B cells produce natural Abs, make Ab responses to microbial pathogens, and contribute to autoimmunity. Although the delta isoform of the PI3K p110 catalytic subunit is essential for development of these innate-like B cells, its role in the localization, activation, and function of normal B-1 and MZ B cells is not known. Using IC87114, a highly selective inhibitor of p110delta enzymatic activity, we show that p110delta is important for murine B-1 and MZ B cells to respond to BCR clustering, the TLR ligands LPS and CpG DNA, and the chemoattractants CXCL13 and sphingosine 1-phosphate. In these innate-like B cells, p110delta activity mediates BCR-, TLR- and chemoattractant-induced activation of the Akt prosurvival kinase, chemoattractant-induced migration, and TLR-induced proliferation. Moreover, we found that TLR-stimulated Ab responses by B-1 and MZ B cells, as well as the localization of MZ B cells in the spleen, depend on p110delta activity. Finally, we show that the in vivo production of natural Abs requires p110delta and that p110delta inhibitors can reduce in vivo autoantibody responses. Thus, targeting p110delta may be a novel approach for regulating innate-like B cells and for treating Ab-mediated autoimmune diseases.
  •  
18.
  • Jadersten, M., et al. (författare)
  • Targeting SAMHD1 with hydroxyurea in first-line cytarabine-based therapy of newly diagnosed acute myeloid leukaemia: Results from the HEAT-AML trial
  • 2022
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 292:6, s. 925-940
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Treatment of newly diagnosed acute myeloid leukaemia (AML) is based on combination chemotherapy with cytarabine (ara-C) and anthracyclines. Five-year overall survival is below 30%, which has partly been attributed to cytarabine resistance. Preclinical data suggest that the addition of hydroxyurea potentiates cytarabine efficacy by increasing ara-C triphosphate (ara-CTP) levels through targeted inhibition of SAMHD1. Objectives In this phase 1 trial, we evaluated the feasibility, safety and efficacy of the addition of hydroxyurea to standard chemotherapy with cytarabine/daunorubicin in newly diagnosed AML patients. Methods Nine patients were enrolled and received at least two courses of ara-C (1 g/m(2)/2 h b.i.d. d1-5, i.e., a total of 10 g/m(2) per course), hydroxyurea (1-2 g d1-5) and daunorubicin (60 mg/m(2) d1-3). The primary endpoint was safety; secondary endpoints were complete remission rate and measurable residual disease (MRD). Additionally, pharmacokinetic studies of ara-CTP and ex vivo drug sensitivity assays were performed. Results The most common grade 3-4 toxicity was febrile neutropenia (100%). No unexpected toxicities were observed. Pharmacokinetic analyses showed a significant increase in median ara-CTP levels (1.5-fold; p = 0.04) in patients receiving doses of 1 g hydroxyurea. Ex vivo, diagnostic leukaemic bone marrow blasts from study patients were significantly sensitised to ara-C by a median factor of 2.1 (p = 0.0047). All nine patients (100%) achieved complete remission, and all eight (100%) with validated MRD measurements (flow cytometry or real-time quantitative polymerase chain reaction [RT-qPCR]) had an MRD level <0.1% after two cycles of chemotherapy. Treatment was well-tolerated, and median time to neutrophil recovery >1.0 x 10(9)/L and to platelet recovery >50 x 10(9)/L after the start of cycle 1 was 19 days and 22 days, respectively. Six of nine patients underwent allogeneic haematopoietic stem-cell transplantation (allo-HSCT). With a median follow-up of 18.0 (range 14.9-20.5) months, one patient with adverse risk not fit for HSCT experienced a relapse after 11.9 months but is now in second complete remission. Conclusion Targeted inhibition of SAMHD1 by the addition of hydroxyurea to conventional AML therapy is safe and appears efficacious within the limitations of the small phase 1 patient cohort. These results need to be corroborated in a larger study.
  •  
19.
  • Jenndahl, L., et al. (författare)
  • Personalized tissue-engineered arteries as vascular graft transplants : A safety study in sheep
  • 2022
  • Ingår i: Regenerative Therapy. - : Japanese Society of Regenerative Medicine. - 2352-3204. ; 21, s. 331-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient's own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization in vivo. Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine in vivo study as a potential alternative for vein grafting. In this study, personalized tissue engineered arteries (P-TEA) were developed using the same methodology and evaluated for safety in a sheep in vivo model of carotid artery transplantation. Five personalized arteries were transplanted to carotid arteries and analyzed for safety and patency as well as with histology after four months in vivo. All grafts were fully patent without any occlusion or stenosis. The tissue was well cellularized with a continuous endothelial cell layer covering the luminal surface, revascularized adventitia with capillaries and no sign of rejection or infection. In summary, the results indicate that P-TEA is safe to use and has potential as clinical grafts. 
  •  
20.
  • Johansson, Maria E, 1977, et al. (författare)
  • alpha 7 Nicotinic Acetylcholine Receptor Is Expressed in Human Atherosclerosis and Inhibits Disease in Mice-Brief Report
  • 2014
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 34:12, s. 2632-2636
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective-Cholinergic pathways of the autonomic nervous system are known to modulate inflammation. Because atherosclerosis is a chronic inflammatory condition, we tested whether cholinergic signaling operates in this disease. We have analyzed the expression of the alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR) in human atherosclerotic plaques and studied its effects on the development of atherosclerosis in the hypercholesterolemic Ldlr(-/-) mouse model. Approach and Results-alpha 7nAChR protein was detected on T cells and macrophages in surgical specimens of human atherosclerotic plaques. To study the role of alpha 7nAChR signaling in atherosclerosis, male Ldlr(-/-) mice were lethally irradiated and reconstituted with bone marrow from wild-type or alpha 7nAChR-deficient animals. Ablation of hematopoietic cell alpha 7nAChR increased aortic atherosclerosis by 72%. This was accompanied by increased aortic interferon-gamma mRNA, implying increased Th1 activity in the absence of a7nAChR signaling. Conclusions-The present study shows that signaling through hematopoietic alpha 7nAChR inhibits atherosclerosis and suggests that it operates by modulating immune inflammation. Given the observation that alpha 7nAChR is expressed by T cells and macrophages in human plaques, our findings support the notion that cholinergic regulation may act to inhibit disease development also in man.
  •  
21.
  • Juul-Dam, K. L., et al. (författare)
  • Measurable residual disease assessment by qPCR in peripheral blood is an informative tool for disease surveillance in childhood acute myeloid leukaemia
  • 2020
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 190:2, s. 198-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial assessments of measurable (or minimal) residual disease (MRD) by qPCR may identify nascent relapse in children with acute myeloid leukaemia (AML) and enable pre-emptive therapy. We investigated the kinetics and prognostic impact of recurrent fusion transcripts (RUNX1-RUNX1T1, CBFB-MYH11, KMT2A-MLLT3 or KMT2A-ELL) in 774 post-induction samples from bone marrow (BM, 347) and peripheral blood (PB, 427) from 75 children with AML. BM MRD persistence during consolidation did not increase the risk of relapse, and MRD at therapy completion did not correlate to outcome (HR=0·64/MRD log reduction (CI: 0·32–1·26), P=0·19). In contrast, 8/8 patients with detectable MRD in PB after first consolidation relapsed. Persistence (n=4) and shifting from negative to positive (n=10) in PB during follow-up predicted relapse in 14/14 patients. All 253PB samples collected during follow-up from 36 patients in continuous complete remission were MRD negative. In core-binding factor AML, persistent low-level MRD positivity in BM during follow-up was frequent but an increment to above 5×10−4 heralded subsequent haematological relapse in 12/12 patients. We demonstrate that MRD monitoring in PB after induction therapy is highly informative and propose an MRD increment above 5×10−4 in PB and BM as a definition of molecular relapse since it always leads to haematological relapse. © 2020 British Society for Haematology and John Wiley & Sons Ltd
  •  
22.
  • Karlsson, Lene, et al. (författare)
  • Fusion transcript analysis reveals slower response kinetics than multiparameter flow cytometry in childhood acute myeloid leukaemia
  • 2022
  • Ingår i: International Journal of Laboratory Hematology. - : Wiley. - 1751-5521 .- 1751-553X. ; 44:6, s. 1094-1101
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Analysis of measurable residual disease (MRD) is increasingly being implemented in the clinical care of children and adults with acute myeloid leukaemia (AML). However, MRD methodologies differ and discordances in results lead to difficulties in interpretation and clinical decision-making. The aim of this study was to compare results from reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiparameter flow cytometry (MFC) in childhood AML and describe the kinetics of residual leukaemic burden during induction treatment. Methods In 15 children who were treated in the NOPHO-AML 2004 trial and had fusion transcripts quantified by RT-qPCR, we compared MFC with RT-qPCR for analysis of MRD during (day 15) and after induction therapy. Eight children had RUNX1::RUNX1T1, one CBFB::MYH11 and six KMT2A::MLLT3. Results When >= 0.1% was used as cut-off for positivity, 10 of 22 samples were discordant. The majority (9/10) were MRD positive with RT-qPCR but MRD negative with MFC, and several such cases showed the presence of mature myeloid cells. Fusion transcript expression was verified in mature cells as well as in CD34 expressing cells sorted from diagnostic samples. Conclusions Measurement with RT-qPCR suggests slower response kinetics than indicated from MFC, presumably due to the presence of mature cells expressing fusion transcript. The prognostic impact of early measurements with RT-qPCR remains to be determined.
  •  
23.
  • Khoury, J. D., et al. (författare)
  • The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms
  • 2022
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 36, s. 1703-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • The upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours is part of an effort to hierarchically catalogue human cancers arising in various organ systems within a single relational database. This paper summarizes the new WHO classification scheme for myeloid and histiocytic/dendritic neoplasms and provides an overview of the principles and rationale underpinning changes from the prior edition. The definition and diagnosis of disease types continues to be based on multiple clinicopathologic parameters, but with refinement of diagnostic criteria and emphasis on therapeutically and/or prognostically actionable biomarkers. While a genetic basis for defining diseases is sought where possible, the classification strives to keep practical worldwide applicability in perspective. The result is an enhanced, contemporary, evidence-based classification of myeloid and histiocytic/dendritic neoplasms, rooted in molecular biology and an organizational structure that permits future scalability as new discoveries continue to inexorably inform future editions.
  •  
24.
  •  
25.
  •  
26.
  • Pearson, A. D. J., et al. (författare)
  • Paediatric Strategy Forum for medicinal product development for acute myeloid leukaemia in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration
  • 2020
  • Ingår i: European Journal of Cancer. - : Elsevier BV. - 0959-8049. ; 136, s. 116-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The current standard-of-care for front-line therapy for acute myeloid leukaemia (AML) results in short-term and long-term toxicity, but still approximately 40% of children relapse. Therefore, there is a major need to accelerate the evaluation of innovative medicines, yet drug development continues to be adult-focused. Furthermore, the large number of competing agents in rare patient populations requires coordinated prioritisation, within the global regulatory framework and cooperative group initiatives. Methods: The fourth multi-stakeholder Paediatric Strategy Forum focused on AML in children and adolescents. Results: CD123 is a high priority target and the paediatric development should be accelerated as a proof-of-concept. Efforts must be coordinated, however, as there are a limited number of studies that can be delivered. Studies of FLT3 inhibitors in agreed paediatric investigation plans present challenges to be completed because they require enrolment of a larger number of patients than actually exist. A consensus was developed by industry and academia of optimised clinical trials. For AML with rare mutations that are more frequent in adolescents than in children, adult trials should enrol adolescents and when scientifically justified, efficacy data could be extrapolated. Methodologies and definitions of minimal residual disease need to be standardised internationally and validated as a new response criterion. Industry supported, academic sponsored platform trials could identify products to be further developed. The Leukaemia and Lymphoma Society PedAL/EUpAL initiative has the potential to be a major advance in the field. Conclusion: These initiatives continue to accelerate drug development for children with AML and ultimately improve clinical outcomes. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
27.
  •  
28.
  • Schneider, Edith, et al. (författare)
  • MicroRNA-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia.
  • 2018
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 103, s. 246-255
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNA-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR 155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo. However, in the absence or after the removal of miR-155, leukemia onset and progression were unaffected. Although, miR-155 accelerated growth and homing as well as impaired differentiation, our data underscore the pathophysiological relevance of miR 155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.
  •  
29.
  • Simsa, Robin, et al. (författare)
  • Brain organoid formation on decellularized porcine brain ECM hydrogels
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.
  •  
30.
  • Simsa, Robin, et al. (författare)
  • Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Decellularization of blood vessels is a promising approach to generate native biomaterials for replacement of diseased vessels. The decellularization process affects the mechanical properties of the vascular graft and thus can have a negative impact for in vivo functionality. The aim of this study was to determine how detergents under different fluid dynamics affects decellularization efficacy and mechanical properties of the vascular graft. We applied a protocol utilizing 1% TritonX, 1% Tributyl phosphate (TnBP) and DNase on porcine vena cava. The detergents were applied to the vessels under different conditions; static, agitation and perfusion with 3 different perfusion rates (25, 100 and 400 mL/min). The decellularized grafts were analyzed with histological, immunohistochemical and mechanical tests. We found that decellularization efficacy was equal in all groups, however the luminal ultrastructure of the static group showed remnant cell debris and the 400 mL/min perfusion group showed local damage and tearing of the luminal surface. The mechanical stiffness and maximum tensile strength were not influenced by the detergent application method. In conclusion, our results indicate that agitation or low-velocity perfusion with detergents are preferable methods for blood vessel decellularization.
  •  
31.
  • Simsa, Robin, et al. (författare)
  • Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat
  • 2019
  • Ingår i: Foods. - : MDPI AG. - 2304-8158. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle-tissue engineering can be applied to produce cell-based meat for human consumption, but growth parameters need to be optimized for efficient production and similarity to traditional meat. The addition of heme proteins to plant-based meat alternatives was recently shown to increase meat-like flavor and natural color. To evaluate whether heme proteins also have a positive effect on cell-based meat production, bovine muscle satellite cells (BSCs) were grown in the presence of hemoglobin (Hb) or myoglobin (Mb) for up to nine days in a fibrin hydrogel along 3D-printed anchor-point constructs to generate bioartificial muscles (BAMs). The influence of heme proteins on cell proliferation, tissue development, and tissue color was analyzed. We found that the proliferation and metabolic activity of BSCs was significantly increased when Mb was added, while Hb had no, or a slightly negative, effect. Hb and, in particular, Mb application led to a very similar color of BAMs compared to cooked beef, which was not noticeable in groups without added heme proteins. Taken together, these results indicate a potential benefit of adding Mb to cell culture media for increased proliferation and adding Mb or Hb for the coloration of cell-based meat.
  •  
32.
  • Wennerås, Christine, 1963, et al. (författare)
  • Infection with Neoehrlichia mikurensis promotes the development of malignant B- cell lymphomas
  • 2023
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 201:3, s. 480-488
  • Tidskriftsartikel (refereegranskat)abstract
    • The tick-borne pathogen Neoehrlichia (N.) mikurensis is implicated in persistent infection of the vascular endothelium. B cells are crucial for the host defence to this infection. Chronic stimulation of B cells may result in B-cell transformation and lymphoma. Five patients with malignant B-cell lymphoma and concomitant N. mikurensis infection were investigated regarding clinical picture, lymphoma subtype, B-cell lymphoma immunophenotype and IGHV (variable region of the immunoglobulin heavy) gene repertoire. Three of the five patients improved markedly and ceased lymphoma treatment after doxycycline treatment to eliminate N. mikurensis. Sequencing the B-cell lymphoma IGHV genes revealed preferred usage of the IGHV1 (IGHV1-2, and -69) and IGHV3 (IGHV3-15, -21, -23) families. In conclusion, N. mikurensis infection may drive the development of malignant B-cell lymphomas. Eradication of the pathogen appears to induce remission with apparent curing of the lymphoma in some cases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy