SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fontani Francesco) "

Sökning: WFRF:(Fontani Francesco)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coutens, A., et al. (författare)
  • VLA cm-wave survey of young stellar objects in the Oph A cluster: Constraining extreme UV- And X-ray-driven disk photoevaporation: A pathfinder for Square Kilometre Array studies
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of young stellar objects (YSOs) in centimeter bands can probe the continuum emission from growing dust grains, ionized winds, and magnetospheric activity that are intimately connected to the evolution of protoplanetary disks and the formation of planets. We carried out sensitive continuum observations toward the Ophiuchus A star-forming region, using the Karl G. Jansky Very Large Array (VLA) at 10 GHz over a field-of-view of 6′ and with a spatial resolution of θmaj ×θmin ∼ 0.′′4 × 0.′′2. We achieved a 5 μJy beam-1 rms noise level at the center of our mosaic field of view. Among the 18 sources we detected, 16 were YSOs (three Class 0, five Class I, six Class II, and two Class III) and two were extragalactic candidates. We find that thermal dust emission generally contributed less than 30% of the emission at 10 GHz. The radio emission is dominated by other types of emission, such as gyro-synchrotron radiation from active magnetospheres, free-free emission from thermal jets, free-free emission from the outflowing photoevaporated disk material, and synchrotron emission from accelerated cosmic-rays in jet or protostellar surface shocks. These different types of emission could not be clearly disentangled. Our non-detections for Class II/III disks suggest that extreme UV-driven photoevaporation is insufficient to explain disk dispersal, assuming that the contribution of UV photoevaporating stellar winds to radio flux does not evolve over time. The sensitivity of our data cannot exclude photoevaporation due to the role of X-ray photons as an efficient mechanism for disk dispersal. Deeper surveys using the Square Kilometre Array (SKA) will have the capacity to provide significant constraints to disk photoevaporation.
  •  
2.
  • Barnes, Ashley T., et al. (författare)
  • Mother of dragons: A massive, quiescent core in the dragon cloud (IRDC G028.37+00.07)
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Core accretion models of massive star formation require the existence of massive, starless cores within molecular clouds. Yet, only a small number of candidates for such truly massive, monolithic cores are currently known. Aims. Here we analyse a massive core in the well-studied infrared-dark cloud (IRDC) called the dragon clouda'(also known as G028.37+00.07 or Cloud Ca). This core (C2c1) sits at the end of a chain of a roughly equally spaced actively star-forming cores near the center of the IRDC. Methods. We present new high-angular-resolution 1 mm ALMA dust continuum and molecular line observations of the massive core. Results. The high-angular-resolution observations show that this region fragments into two cores, C2c1a and C2c1b, which retain significant background-subtracted masses of 23 M· and 2 M· (31 M· and 6 M· without background subtraction), respectively. The cores do not appear to fragment further on the scales of our highest-angular-resolution images (0.2 , 0.005 pc ∼ 1000 AU). We find that these cores are very dense (nH2 > 106 cm-3) and have only trans-sonic non-thermal motions ( 3s ∼ 1). Together the mass, density, and internal motions imply a virial parameter of
  •  
3.
  • Cheng, Yu, et al. (författare)
  • Star Formation in a Strongly Magnetized Cloud
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 916:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study star formation in the Center Ridge 1 (CR1) clump in the Vela C giant molecular cloud, selected as a high column density region that shows the lowest level of dust continuum polarization-angle dispersion, likely indicating that the magnetic field is relatively strong. We observe the source with the Atacama Large Millimeter/submillimeter Array 7 m array at 1.05 and 1.3 mm wavelengths, which enable measurements of dust temperature, core mass, and astrochemical deuteration. A relatively modest number of 11 dense cores are identified via their dust continuum emission, with masses spanning from 0.17-6.7 M-circle dot. Overall CR1 has a relatively low compact dense gas fraction compared with other typical clouds with similar column densities, which may be a result of the strong magnetic field and/or the very early evolutionary stage of this region. The deuteration ratios, D-frac, of the cores, measured with N2H+(3-2) and N2D+(3-2) lines, span from 0.011-0.85, with the latter being one of the highest values yet detected. The level of deuteration appears to decrease with evolution from prestellar to protostellar phase. A linear filament, running approximately parallel with the large scale magnetic field orientation, is seen connecting the two most massive cores, each having CO bipolar outflows aligned orthogonally to the filament. The filament contains the most deuterated core, likely to be prestellar and located midway between the protostars. The observations permit measurement of the full deuteration structure of the filament along its length, which we present. We also discuss the kinematics and dynamics of this structure, as well as of the dense core population.
  •  
4.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. Aims. To test this scenario, we measured the deuteration of N2H+, DNfrac 2H+- a well-studied tracer of pre-stellar cores - across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. Methods. We use N2H+ and N2D+ J = 1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DN2H+ frac towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, and ambient gas. Results. We find DN2H+ frac in the range 0.03-0.1, which is several orders of magnitude larger than the cosmic D/H ratio (∼10-5). The DN2H+ frac across the shock front is enhanced by more than a factor of 2 (DNfrac 2H+∼ 0.05-0.07) with respect to the ambient gas (=0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DN2H+ frac ∼ 0.1.
  •  
5.
  • Cosentino, Giuliana, et al. (författare)
  • Interstellar Plunging Waves: ALMA Resolves the Physical Structure of Nonstationary MHD Shocks
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 881:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetohydrodynamic (MHD) shocks are violent events that inject large amounts of energy in the interstellar medium dramatically modifying its physical properties and chemical composition. Indirect evidence for the presence of such shocks has been reported from the especial chemistry detected toward a variety of astrophysical shocked environments. However, the internal physical structure of these shocks remains unresolved since their expected spatial scales are too small to be measured with current instrumentation. Here we report the first detection of a fully spatially resolved, MHD shock toward the infrared dark cloud (IRDC) G034.77-00.55. The shock, probed by silicon monoxide (SiO) and observed with the Atacama Large Millimeter/submillimeter Array (ALMA), is associated with the collision between the dense molecular gas of the cloud and a molecular gas flow pushed toward the IRDC by the nearby supernova remnant (SNR) W44. The interaction is occurring on subparsec spatial scales thanks to the enhanced magnetic field of the SNR, making the dissipation region of the MHD shock large enough to be resolved with ALMA. Our observations suggest that molecular flow-flow collisions can be triggered by stellar feedback, inducing shocked molecular gas densities compatible with those required for massive star formation.
  •  
6.
  • Entekhabi, N., et al. (författare)
  • Astrochemical modelling of infrared dark clouds
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Infrared dark clouds (IRDCs) are cold, dense regions of the interstellar medium (ISM) that are likely to represent the initial conditions for massive star and star cluster formation. It is thus important to study the physical and chemical conditions of IRDCs to provide constraints and inputs for theoretical models of these processes. Aims. We aim to determine the astrochemical conditions, especially the cosmic ray ionisation rate (CRIR) and chemical age, in different regions of the massive IRDC G28.37+00.07 by comparing observed abundances of multiple molecules and molecular ions with the predictions of astrochemical models. Methods. We have computed a series of single-zone, time-dependent, astrochemical models with a gas-grain network that systematically explores the parameter space of the density, temperature, CRIR, and visual extinction. We have also investigated the effects of choices of CO ice binding energy and temperatures achieved in the transient heating of grains when struck by cosmic rays. We selected ten positions across the IRDC that are known to have a variety of star formation activity. We utilised mid-infrared extinction maps and sub-millimetre (sub-mm) emission maps to measure the mass surface densities of these regions needed for abundance and volume density estimates. The sub-mm emission maps were also used to measure temperatures. We then used Instituto de Radioas-tromía Milimétrica (IRAM) 30 m observations of various tracers, especially C18O(1-0), H13CO+(1-0), HC18O+(1-0), and N2H+(1-0), to estimate column densities and thus abundances. Finally, we investigated the range of astrochemical conditions that are consistent with the observed abundances. Results. The typical physical conditions of the IRDC regions are nH ∼ 3 ×-104 to 105 cm-3 and T ∼ 10 to 15 K. Strong emission of H13CO+(1-0) and N2H+(1-0) is detected towards all the positions and these species are used to define relatively narrow velocity ranges of the IRDC regions, which are used for estimates of CO abundances, via C18O(1-0). We would like to note that CO depletion factors are estimated to be in the range fD ∼ 3 to 10. Using estimates of the abundances of CO, HCO+, and N2H+, we find consistency with astrochemical models that have relatively low CRIRs of ζ ∼ 10-18 to ∼10-17 s-1, with no evidence for systematic variation with the level of star formation activity. Astrochemical ages, which are defined with a reference to an initial condition of all H in H2, all C in CO, and all other species in atomic form, are found to be <1 Myr. We also explore the effects of using other detected species, that is HCN, HNC, HNCO, CH3OH, and H2CO, to constrain the models. These generally lead to implied conditions with higher levels of CRIRs and older chemical ages. Considering the observed fD versus nH relation of the ten positions, which we find to have relatively little scatter, we discuss potential ways in which the astrochemical models can match such a relation as a quasi-equilibrium limit valid at ages of at least a few free-fall times, that is 3;0.3 Myr, including the effect of CO envelope contamination, small variations in temperature history near 15 K, CO-ice binding energy uncertainties, and CR-induced desorption. We find general consistency with the data of ∼0.5 Myr-old models that have ζ ∼ 2-5-10-18 s-1 and CO abundances set by a balance of freeze-out with CR-induced desorption. Conclusions. We have constrained the astrochemical conditions in ten regions in a massive IRDC, finding evidence for relatively low values of CRIR compared to diffuse ISM levels. We have not seen clear evidence for variation in the CRIR with the level of star formation activity. We favour models that involve relatively low CRIRs (≲ 10-17 s-1) and relatively old chemical ages (≳ 3;0.3 Myr, i.e. 3;3tff). We discuss potential sources of systematic uncertainties in these results and the overall implications for IRDC evolutionary history and astrochemical models.
  •  
7.
  • Fomalont, E. B., et al. (författare)
  • THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 808:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to similar to 15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at similar to 350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  •  
8.
  • Kong, Shuo, et al. (författare)
  • Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 855:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼10 5 M o ) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define "dense gas." We then estimate the dense gas mass fraction, f dg , in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ff ∼ 10%, with approximately a factor of two systematic uncertainties.
  •  
9.
  • Kong, Shuo, et al. (författare)
  • Widespread Molecular Outflows in the Infrared Dark Cloud G28.37+0.07: Indications of Orthogonal Outflow-filament Alignment
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ALMA CO(2-1) observations toward a massive infrared dark cloud G28.37+0.07. The ALMA data reveal numerous molecular (CO) outflows with a wide range of sizes throughout the cloud. Sixty-two 1.3 mm continuum cores were identified to be driving molecular outflows. We have determined the position angle in the plane-of-sky of 120 CO outflow lobes and studied their distribution. We find that the distribution of the plane-of-sky outflow position angles peaks at about 100 degrees, corresponding to a concentration of outflows with an approximately east-west direction. For most outflows, we have been able to estimate the plane-of-sky angle between the outflow axis and the filament that harbors the protostar that powers the outflow. Statistical tests strongly indicate that the distribution of outflow-filament orientations is consistent with most outflow axes being mostly orthogonal to their parent filament in three dimensions. Such alignment may result from filament fragmentation or continuous mass transportation from the filament to the embedded protostellar core. The latter is suggested by recent numerical studies with moderately strong magnetic fields.
  •  
10.
  • Kong, Shuo, et al. (författare)
  • Zooming in to Massive Star Birth
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 867:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-resolution (0 2, 1000 au) 1.3 mm ALMA observations of the massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using N2D +(3-2), we resolve the previously identified C1-S core, separating the bulk of its emission from two nearby protostellar sources. C1-S is thus identified as a massive (∼50M⊙), compact (∼0.1 pc diameter) starless core, e.g., with no signs of outflow activity. Being highly deuterated, this is a promising candidate for a pre-stellar core on the verge of collapse. An analysis of its dynamical state indicates a sub-virial velocity dispersion compared to a trans-Alfvenic turbulent core model. However, virial equilibrium could be achieved with sub-Alfvenic conditions involving magnetic field strengths of ∼2 mG.
  •  
11.
  • Law, Chi Yan, 1990, et al. (författare)
  • Polarized Light from Massive Protoclusters (POLIMAP). I. Dissecting the Role of Magnetic Fields in the Massive Infrared Dark Cloud G28.37+0.07
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 967:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields may play a crucial role in setting the initial conditions of massive star and star cluster formation. To investigate this, we report SOFIA-HAWC+ 214 μm observations of polarized thermal dust emission and high-resolution GBT-Argus C18O(1-0) observations toward the massive Infrared Dark Cloud (IRDC) G28.37+0.07. Considering the local dispersion of B-field orientations, we produce a map of the B-field strength of the IRDC, which exhibits values between ∼0.03 and 1 mG based on a refined Davis-Chandrasekhar-Fermi method proposed by Skalidis & Tassis. Comparing to a map of inferred density, the IRDC exhibits a B-n relation with a power-law index of 0.51 ± 0.02, which is consistent with a scenario of magnetically regulated anisotropic collapse. Consideration of the mass-to-flux ratio map indicates that magnetic fields are dynamically important in most regions of the IRDC. A virial analysis of a sample of massive, dense cores in the IRDC, including evaluation of magnetic and kinetic internal and surface terms, indicates consistency with virial equilibrium, sub-Alfvénic conditions, and a dominant role for B-fields in regulating collapse. A clear alignment of magnetic field morphology with the direction of the steepest column density gradient is also detected. However, there is no preferred orientation of protostellar outflow directions with the B-field. Overall, these results indicate that magnetic fields play a crucial role in regulating massive star and star cluster formation, and therefore they need to be accounted for in theoretical models of these processes.
  •  
12.
  • Sipilä, O., et al. (författare)
  • Combined model for 15N, 13C, and spin-state chemistry in molecular clouds
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new gas-grain chemical model for the combined isotopic fractionation of carbon and nitrogen in molecular clouds. To this end, we have developed gas-phase and grain-surface chemical networks where the isotope chemistry of carbon and nitrogen is coupled with a time-dependent description of spin-state chemistry, which is important for nitrogen chemistry at low temperatures. We updated the rate coefficients of some isotopic exchange reactions considered previously in the literature, and here we present a set of new exchange reactions involving molecules substituted in 13C and 15N simultaneously. We applied the model to a series of zero-dimensional simulations representing a set of physical conditions across a prototypical prestellar core, exploring the deviations of the isotopic abundance ratios in the various molecules from the elemental isotopic ratios as a function of physical conditions and time. We find that the 12C/13C ratio can deviate from the elemental ratio to a high factor depending on the molecule, and that there are highly time-dependent variations in the ratios. The HCN/H13CN ratio, for example, can obtain values of less than ten depending on the simulation time. The 14N/15N ratios tend to remain close to the assumed elemental ratio within approximately 10%, with no clearly discernible trends for the various species as a function of the physical conditions. Abundance ratios between 13C-containing molecules and 13C+15N-containing molecules however show somewhat increased levels of fractionation as a result of the newly included exchange reactions, though they still remain within a few tens of percent of the elemental 14N/15N ratio. Our results imply the existence of gradients in isotopic abundance ratios across prestellar cores, suggesting that detailed simulations are required to interpret observations of isotopically substituted molecules correctly, especially given that the various isotopic forms of a given molecule do not necessarily trace the same gas layers.
  •  
13.
  • Wang, Chao, et al. (författare)
  • The role of turbulence in high-mass star formation: Subsonic and transonic turbulence are ubiquitously found at early stages
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions. Aims. Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width. Methods. We observed NH3 metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence. Results. Analysis of the turbulence distribution histogram for 32 identified NH3 cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub-and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy