SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forest J.) "

Sökning: WFRF:(Forest J.)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ralimanana, H., et al. (författare)
  • Madagascar’s extraordinary biodiversity: Threats and opportunities
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623
  • Forskningsöversikt (refereegranskat)abstract
    • Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.
  •  
2.
  • Eiserhardt, W. L., et al. (författare)
  • A roadmap for global synthesis of the plant tree of life
  • 2018
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 105:3, s. 614-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.
  •  
3.
  • Forgetta, V., et al. (författare)
  • Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study
  • 2020
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Since screening programs identify only a small proportion of the population as eligible for an intervention, genomic prediction of heritable risk factors could decrease the number needing to be screened by removing individuals at low genetic risk. We therefore tested whether a polygenic risk score for heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-can identify low-risk individuals who can safely be excluded from a fracture risk screening program. Methods and findings A polygenic risk score for SOS was trained and selected in 2 separate subsets of UK Biobank (comprising 341,449 and 5,335 individuals). The top-performing prediction model was termed "gSOS", and its utility in fracture risk screening was tested in 5 validation cohorts using the National Osteoporosis Guideline Group clinical guidelines (N= 10,522 eligible participants). All individuals were genome-wide genotyped and had measured fracture risk factors. Across the 5 cohorts, the average age ranged from 57 to 75 years, and 54% of studied individuals were women. The main outcomes were the sensitivity and specificity to correctly identify individuals requiring treatment with and without genetic prescreening. The reference standard was a bone mineral density (BMD)-based Fracture Risk Assessment Tool (FRAX) score. The secondary outcomes were the proportions of the screened population requiring clinical-risk-factor-based FRAX (CRF-FRAX) screening and BMD-based FRAX (BMD-FRAX) screening. gSOS was strongly correlated with measured SOS (r(2)= 23.2%, 95% CI 22.7% to 23.7%). Without genetic prescreening, guideline recommendations achieved a sensitivity and specificity for correct treatment assignment of 99.6% and 97.1%, respectively, in the validation cohorts. However, 81% of the population required CRF-FRAX tests, and 37% required BMD-FRAX tests to achieve this accuracy. Using gSOS in prescreening and limiting further assessment to those with a low gSOS resulted in small changes to the sensitivity and specificity (93.4% and 98.5%, respectively), but the proportions of individuals requiring CRF-FRAX tests and BMD-FRAX tests were reduced by 37% and 41%, respectively. Study limitations include a reliance on cohorts of predominantly European ethnicity and use of a proxy of fracture risk. Conclusions Our results suggest that the use of a polygenic risk score in fracture risk screening could decrease the number of individuals requiring screening tests, including BMD measurement, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. Author summaryWhy was this study done? Osteoporosis screening identifies only a small proportion of the screened population to be eligible for intervention. The prediction of heritable risk factors using polygenic risk scores could decrease the number of screened individuals by reassuring those with low genetic risk. We investigated whether the genetic prediction of heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-could be incorporated into an established screening guideline to identify individuals at low risk for osteoporosis. What did the researchers do and find? Using UK Biobank, we developed a polygenic risk score (gSOS) consisting of 21,717 genetic variants that was strongly correlated with SOS ( = 23.2%). Using the National Osteoporosis Guideline Group clinical assessment guidelines in 5 validation cohorts, we estimate that reassuring individuals with a high gSOS, rather than doing further assessments, could reduce the number of clinical-risk-factor-based Fracture Risk Assessment Tool (FRAX) tests and bone-density-measurement-based FRAX tests by 37% and 41%, respectively, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. What do these findings mean? We show that genetic pre-screening could reduce the number of screening tests needed to identify individuals at risk of osteoporotic fractures. Therefore, the potential exists to improve the efficiency of osteoporosis screening programs without large losses in sensitivity or specificity to identify individuals who should receive an intervention. Further translational studies are needed to test the clinical applications of this polygenic risk score; however, our work shows how such scores could be tested in the clinic.
  •  
4.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
5.
  • Aebersold, Ruedi, et al. (författare)
  • How many human proteoforms are there?
  • 2018
  • Ingår i: Nature Chemical Biology. - : NATURE PUBLISHING GROUP. - 1552-4450 .- 1552-4469. ; 14:3, s. 206-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA-and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
  •  
6.
  • Lughadha, E. N., et al. (författare)
  • Extinction risk and threats to plants and fungi
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 389-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement There is increasing awareness that plants and fungi, as natural solutions, can play an important role in tackling ongoing global environmental challenges. We illustrate how understanding current and projected threats to plants and fungi is necessary to manage and mitigate risks, while building awareness of gaps and bias in current assessment coverage is essential to adequately prioritize conservation efforts. We highlight the state of the art in conservation science and point to current methods of assessment and future studies needed to mitigate species extinction. SummaryPlant and fungal biodiversity underpin life on earth and merit careful stewardship in an increasingly uncertain environment. However, gaps and biases in documented extinction risks to plant and fungal species impede effective management. Formal extinction risk assessments help avoid extinctions, through engagement, financial, or legal mechanisms, but most plant and fungal species lack assessments. Available global assessments cover c. 30% of plant species (ThreatSearch). Red List coverage overrepresents woody perennials and useful plants, but underrepresents single-country endemics. Fungal assessments overrepresent well-known species and are too few to infer global status or trends. Proportions of assessed vascular plant species considered threatened vary between global assessment datasets: 37% (ThreatSearch), and 44% (International Union for Conservation of Nature Red List of Threatened Species). Our predictions, correcting for several quantifiable biases, suggest that 39% of all vascular plant species are threatened with extinction. However, other biases remain unquantified, and may affect our estimate. Preliminary trend data show plants moving toward extinction. Quantitative estimates based on plant extinction risk assessments may understate likely biodiversity loss: they do not fully capture the impacts of climate change, slow-acting threats, or clustering of extinction risk, which could amplify loss of evolutionary potential. The importance of extinction risk estimation to support existing and emerging conservation initiatives is likely to grow as threats to biodiversity intensify. This necessitates urgent and strategic expansion of efforts toward comprehensive and ongoing assessment of plant and fungal extinction risk.
  •  
7.
  • Flanagan, K. T., et al. (författare)
  • Nuclear Spins and Magnetic Moments of Cu-71,Cu-73,Cu-75 : Inversion of pi 2p(3/2) and pi 1f(5/2) Levels in Cu-75
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:14, s. 142501-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first confirmation of the predicted inversion between the pi 2p(3/2) and pi 1f(5/2) nuclear states in the nu g(9/2) midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of Cu-71,Cu-73,Cu-75, which measured the nuclear spin and magnetic moments. The obtained values are mu(Cu-71)=+2.2747(8)mu(N), mu(Cu-73)=+1.7426(8)mu(N), and mu(Cu-75)=+1.0062(13)mu(N) corresponding to spins I=3/2 for Cu-71,Cu-73 and I=5/2 for Cu-75. The results are in fair agreement with large-scale shell-model calculations.
  •  
8.
  •  
9.
  • Lu, T. Y., et al. (författare)
  • Improved prediction of fracture risk leveraging a genome-wide polygenic risk score
  • 2021
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Accurately quantifying the risk of osteoporotic fracture is important for directing appropriate clinical interventions. While skeletal measures such as heel quantitative speed of sound (SOS) and dual-energy X-ray absorptiometry bone mineral density are able to predict the risk of osteoporotic fracture, the utility of such measurements is subject to the availability of equipment and human resources. Using data from 341,449 individuals of white British ancestry, we previously developed a genome-wide polygenic risk score (PRS), called gSOS, that captured 25.0% of the total variance in SOS. Here, we test whether gSOS can improve fracture risk prediction. Methods We examined the predictive power of gSOS in five genome-wide genotyped cohorts, including 90,172 individuals of European ancestry and 25,034 individuals of Asian ancestry. We calculated gSOS for each individual and tested for the association between gSOS and incident major osteoporotic fracture and hip fracture. We tested whether adding gSOS to the risk prediction models had added value over models using other commonly used clinical risk factors. Results A standard deviation decrease in gSOS was associated with an increased odds of incident major osteoporotic fracture in populations of European ancestry, with odds ratios ranging from 1.35 to 1.46 in four cohorts. It was also associated with a 1.26-fold (95% confidence interval (CI) 1.13-1.41) increased odds of incident major osteoporotic fracture in the Asian population. We demonstrated that gSOS was more predictive of incident major osteoporotic fracture (area under the receiver operating characteristic curve (AUROC) = 0.734; 95% CI 0.727-0.740) and incident hip fracture (AUROC = 0.798; 95% CI 0.791-0.805) than most traditional clinical risk factors, including prior fracture, use of corticosteroids, rheumatoid arthritis, and smoking. We also showed that adding gSOS to the Fracture Risk Assessment Tool (FRAX) could refine the risk prediction with a positive net reclassification index ranging from 0.024 to 0.072. Conclusions We generated and validated a PRS for SOS which was associated with the risk of fracture. This score was more strongly associated with the risk of fracture than many clinical risk factors and provided an improvement in risk prediction. gSOS should be explored as a tool to improve risk stratification to identify individuals at high risk of fracture.
  •  
10.
  • Pérez-Escobar, O. A., et al. (författare)
  • Hundreds of nuclear and plastid loci yield novel insights into orchid relationships
  • 2021
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 108:7, s. 1166-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution. © 2021 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America
  •  
11.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Settling a family feud: a high-level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes
  • 2021
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 108:7, s. 1143-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Premise: Comprising five families that vastly differ in species richness—ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species—members of the Gentianales are often among the most species-rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family-level relationships within Gentianales have been presented in previous studies. Methods: Here we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes. We were able to retrieve partial plastomes from off-target reads for most taxa and infer phylogenetic trees for comparison with the nuclear-derived trees. Results: We recovered high support for over 80% of all nodes. The plastid and nuclear data are largely in agreement, except for some weakly to moderately supported relationships. We discuss the implications of our results for the order’s classification, highlighting points of increased support for previously uncertain relationships. Rubiaceae is sister to a clade comprising (Gentianaceae + Gelsemiaceae) + (Apocynaceae + Loganiaceae). Conclusions: The higher-level phylogenetic relationships within Gentianales are confidently resolved. In contrast to recent studies, our results support the division of Rubiaceae into two subfamilies: Cinchonoideae and Rubioideae. We do not formally recognize Coptosapelteae and Luculieae within any particular subfamily but treat them as incertae sedis. Our framework paves the way for further work on the phylogenetics, biogeography, morphological evolution, and macroecology of this important group of flowering plants.
  •  
12.
  • Bellot, S., et al. (författare)
  • The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems
  • 2022
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 6, s. 1710-1722
  • Tidskriftsartikel (refereegranskat)abstract
    • Protecting nature’s contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions for 1,381 palm species (Arecaceae), a plant family of high socio-economic and ecological importance. We integrate these predictions with published assessments for 508 species (covering 75% of all palm species) and we identify top-priority regions for palm conservation on the basis of their proportion of threatened evolutionarily distinct, functionally distinct and used species. Finally, we explore palm use resilience to identify non-threatened species that could potentially serve as substitutes for threatened used species by providing similar products. We estimate that over a thousand palms (56%) are probably threatened, including 185 species with documented uses. Some regions (New Guinea, Vanuatu and Vietnam) emerge as top ten priorities for conservation only after incorporating machine learning extinction risk predictions. Potential substitutes are identified for 91% of the threatened used species and regional use resilience increases with total palm richness. However, 16 threatened used species lack potential substitutes and 30 regions lack substitutes for at least one of their threatened used palm species. Overall, we show that hundreds of species of this keystone family face extinction, some of them probably irreplaceable, at least locally. This highlights the need for urgent actions to avoid major repercussions on palm-associated ecosystem processes and human livelihoods in the coming decades. © 2022, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
13.
  • Hallberg, Eric, et al. (författare)
  • Non-visual sense organs
  • 2004
  • Ingår i: Treatise on Zoology, Crustacea vol 1. - 978 90 04 12918 4 ; , s. 301-380
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
14.
  • Hendriks, Kasper P., et al. (författare)
  • Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset
  • 2023
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 33:19, s. 4052-4068
  • Tidskriftsartikel (refereegranskat)abstract
    • The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
  •  
15.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Madagascar's extraordinary biodiversity : Evolution, distribution, and use
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623, s. 962-
  • Tidskriftsartikel (refereegranskat)abstract
    • Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique " living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Moiloa, Ntwai A., et al. (författare)
  • Biogeographic origins of southern African Silene (Caryophyllaceae)
  • 2021
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903. ; 162
  • Tidskriftsartikel (refereegranskat)abstract
    • Silene (Caryophyllaceae) is distributed predominantly in the northern Hemisphere, where it is most diverse around the Mediterranean Basin. The genus is also well represented in North Africa, extending into tropical, subSaharan and southern Africa. Eight native species are recognized in southern Africa, taxonomically placed in two sections: Elisanthe and Silene s.l. Although the taxonomy of the southern African taxa has recently been revised, their phylogenetic relationships and biogeographic history remain unclear. This study aims to infer the phylogenetic position and geographic origins of the southern African taxa. We generated DNA sequences of nuclear and plastid loci from several individuals belonging to all eight species of Silene recognized from southern Africa, and combined our DNA sequences with existing data representing species from major clades (i.e. sections) based on the recently revised Silene infrageneric taxonomy. We used a Bayesian coalescent species tree continuous diffusion approach to co-estimate the species tree and the ancestral areas of representative members of the genus. Our results show that the perennial southern African members of section Elisanthe form a strongly-supported clade with the Eurasian annual S. noctiflora and the Central Asian perennial S. turkestanica. The rest of the perennial species form a strongly-supported clade together with the annual S. aethiopica, which is nested in a larger Mediterranean clade comprising mostly annual species classified in section Silene s.l. Estimates of ancestral areas indicate a late Pleistocene dispersal to southern Africa from central and East Africa for the sub-Saharan members of section Silene s.l. The Elisanthe clade is inferred to have colonized southern Africa through longdistance dispersal from Eurasia during the late Pleistocene. Our findings support the hypothesis of a relatively recent colonization into southern Africa resulting from two independent dispersal events during the Pleistocene.
  •  
20.
  • Perez-Escobar, Oscar A., et al. (författare)
  • The origin and speciation of orchids
  • 2024
  • Ingår i: NEW PHYTOLOGIST. - 0028-646X .- 1469-8137.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
  •  
21.
  • Pironon, S., et al. (författare)
  • Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity
  • 2020
  • Ingår i: Plants. - : MDPI AG. - 2223-7747. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives. The agro-biodiversity in these regions has, likewise, often been considered threatened. Biodiversity and agro-biodiversity hotspots partly overlap, but their geographic intricacies have rarely been investigated together. Here we review the history of these two concepts and explore their geographic relationship by analysing global distribution and human use data for all plants, and for major crops and associated wild relatives. We highlight a geographic continuum between agro-biodiversity hotspots that contain high richness in species that are intensively used and well known by humanity (i.e., major crops and most viewed species on Wikipedia) and biodiversity hotspots encompassing species that are less heavily used and documented (i.e., crop wild relatives and species lacking information on Wikipedia). Our contribution highlights the key considerations needed for further developing a unifying concept of agro-biodiversity hotspots that encompasses multiple facets of diversity (including genetic and phylogenetic) and the linkage with overall biodiversity. This integration will ultimately enhance our understanding of the geography of human-plant interactions and help guide the preservation of nature and its contributions to people.
  •  
22.
  • Strauch, S, et al. (författare)
  • Polarization transfer in the He-4((e)over-right-arrow,e '(p)over-right-arrow)H-3 reaction up to Q(2)=2.6 (GeV/c)(2)
  • 2003
  • Ingår i: Physical Review Letters. - 1079-7114. ; 91:5: 052301
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the proton recoil polarization in the He-4((e) over right arrow ,e(')(p) over right arrow)H-4 reaction at Q(2)=0.5, 1.0, 1.6, and 2.6 (GeV/c)(2). The measured ratio of polarization transfer coefficients differs from a fully relativistic calculation, favoring the inclusion of a medium modification of the proton form factors predicted by a quark-meson coupling model. In addition, the measured induced polarizations agree reasonably well with the fully relativistic calculation indicating that the treatment of final-state interactions is under control.
  •  
23.
  • Forest, F., et al. (författare)
  • The role of biotic and abiotic factors in evolution of ant dispersal in the milkwort family (Polygalaceae)
  • 2007
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 61:7, s. 1675-1694
  • Tidskriftsartikel (refereegranskat)abstract
    • A phylogenetic approach was taken to investigate the evolutionary history of seed appendages in the plant family Polygalaceae (Fabales) and determine which factors might be associated with evolution of elaiosomes through comparisons to abiotic (climate) and biotic (ant species number and abundance) timelines. Molecular datasets from three plastid regions representing 160 species were used to reconstruct a phylogenetic tree of the order Fabales, focusing on Polygalaceae. Bayesian dating methods were used to estimate the age of the appearance of ant-dispersed elaiosomes in Polygalaceae, shown by likelihood optimizations to have a single origin in the family. Topology-based tests indicated a diversification rate shift associated with appearance of caruncular elaiosomes. We show that evolution of the caruncular elaiosome type currently associated with ant dispersal occurred 54.0-50.5 million year ago. This is long after an estimated increase in ant lineages in the Late Cretaceous based on molecular studies, but broadly concomitant with increasing global temperatures culminating in the Late Paleocene-Early Eocene thermal maxima. These results suggest that although most major ant clades were present when elaiosomes appeared, the environmental significance of elaiosomes may have been an important factor in success of elaiosome-bearing lineages. Ecological abundance of ants is perhaps more important than lineage numbers in determining significance of ant dispersal. Thus, our observation that elaiosomes predate increased ecological abundance of ants inferred from amber deposits could be indicative of an initial abiotic environmental function.
  •  
24.
  •  
25.
  • Hamilton, Joshua J., et al. (författare)
  • Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acI
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An explosion in the number of available genome sequences obtained through metagenomics and single-cell genomics has enabled a new view of the diversity of microbial life, yet we know surprisingly little about how microbes interact with each other or their environment. In fact, the majority of microbial species remain uncultivated, while our perception of their ecological niches is based on reconstruction of their metabolic potential. In this work, we demonstrate how the “seed set framework,” which computes the set of compounds that an organism must acquire from its environment (E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin, Proc Natl Acad Sci U S A 105:14482–14487, 2008, https://doi.org/10.1073/pnas.0806162105 ), enables computational analysis of metabolic reconstructions while providing new insights into a microbe’s metabolic capabilities, such as nutrient use and auxotrophies. We apply this framework to members of the ubiquitous freshwater actinobacterial lineage acI, confirming and extending previous experimental and genomic observations implying that acI bacteria are heterotrophs reliant on peptides and saccharides. We also present the first metatranscriptomic study of the acI lineage, revealing high expression of transport proteins and the light-harvesting protein actinorhodopsin. Putative transport proteins complement predictions of nutrients and essential metabolites while providing additional support of the hypothesis that members of the acI are photoheterotrophs.
  •  
26.
  • Janouskovec, Jan, et al. (författare)
  • A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction
  • 2017
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 27:23, s. 3717-3724.e5
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotic cells represents a key transition in cellular evolution and is closely tied to outstanding questions about mitochondrial endosymbiosis [1, 2]. For example, gene-rich mitochondrial genomes are thought to be indicative of an ancient divergence, but this relies on unexamined assumptions about endosymbiont-to-host gene transfer [3-5]. Here, we characterize Ancoracysta twista, a new predatory flagellate that is not closely related to any known lineage in 201-protein phylogenomic trees and has a unique morphology, including a novel type of extrusome (ancoracyst). The Ancoracysta mitochondrion has a gene-rich genome with a coding capacity exceeding that of all other eukaryotes except the distantly related jakobids and Diphylleia, and it uniquely possesses heterologous, nucleus-, and mitochondrion-encoded cytochrome c maturase systems. To comprehensively examine mitochondrial genome reduction, we also assembled mitochondrial genomes from picozoans and colponemids and re-annotated existing mitochondrial genomes using hidden Markov model gene profiles. This revealed over a dozen previously overlooked mitochondrial genes at the level of eukaryotic supergroups. Analysis of trends over evolutionary time demonstrates that gene transfer to the nucleus was non-linear, that it occurred in waves of exponential decrease, and that much of it took place comparatively early, massively independently, and with lineage-specific rates. This process has led to differential gene retention, suggesting that gene-rich mitochondrial genomes are not a product of their early divergence. Parallel transfer of mitochondrial genes and their functional replacement by new nuclear factors are important in models for the origin of eukaryotes, especially as major gaps in our knowl-edge of eukaryotic diversity at the deepest level remain unfilled.
  •  
27.
  • Janouškovec, Jan, et al. (författare)
  • Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:2, s. E171-E180
  • Tidskriftsartikel (refereegranskat)abstract
    • Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.
  •  
28.
  • Tietje, Melanie, et al. (författare)
  • Global hotspots of plant phylogenetic diversity
  • 2023
  • Ingår i: New Phytologist. - 0028-646X .- 1469-8137. ; 240:4, s. 1636-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods. Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called ‘hotspots’) do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD. Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub-)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential. Safeguarding PD in the Anthropocene (including the protection of some comparatively species-poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.
  •  
29.
  • Weiskopf, Sarah R., et al. (författare)
  • A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models
  • 2022
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 72:11, s. 1062-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals. 
  •  
30.
  • Weiskopf, Sarah R., et al. (författare)
  • Increasing the uptake of ecological model results in policy decisions to improve biodiversity outcomes
  • 2022
  • Ingår i: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152 .- 1873-6726. ; 149
  • Tidskriftsartikel (refereegranskat)abstract
    • Models help decision-makers anticipate the consequences of policies for ecosystems and people; for instance, improving our ability to represent interactions between human activities and ecological systems is essential to identify pathways to meet the 2030 Sustainable Development Goals. However, use of modeling outputs in decision-making remains uncommon. We share insights from a multidisciplinary National Socio-Environmental Synthesis Center working group on technical, communication, and process-related factors that facilitate or hamper uptake of model results. We emphasize that it is not simply technical model improvements, but active and iterative stakeholder involvement that can lead to more impactful outcomes. In particular, trust-and relationship-building with decision-makers are key for knowledge-based decision making. In this respect, nurturing knowledge exchange on the interpersonal (e.g., through participatory processes) and institutional level (e.g., through science-policy interfaces across scales) represents a promising approach. To this end, we offer a generalized approach for linking modeling and decision-making.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30
Typ av publikation
tidskriftsartikel (27)
konferensbidrag (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Antonelli, Alexandre ... (9)
Forest, F. (9)
Baker, William J. (5)
Forest, Felix (5)
Baker, W. J. (4)
Forest, M (4)
visa fler...
Torres Jimenez, Mari ... (3)
Bacon, Christine D. (3)
Maurin, Olivier (3)
Zuntini, Alexandre R ... (3)
Leitch, I. J. (3)
Pironon, S. (3)
Walker, B. E. (3)
Bachman, S. P. (3)
Karlsson, Magnus (2)
Muller, J. (2)
Kanis, J. A. (2)
Nethander, Maria, 19 ... (2)
Peter, M. (2)
Wedell, A (2)
Burki, Fabien (2)
Ohlsson, Claes, 1965 (2)
Harmáčková, Zuzana V ... (2)
Hagenfeldt, K (2)
McCloskey, E. V. (2)
Mellström, Dan, 1945 (2)
Clayton, P. (2)
Saenger, P. (2)
Andermann, Tobias (2)
Silvestro, Daniele (2)
Faurby, Sören, 1981 (2)
Cooke, Robert S., 19 ... (2)
Perrigo, Allison L. (2)
Orwoll, E. (2)
Testo, Weston L. (2)
Farooq, Harith, 1986 (2)
Perez-Escobar, Oscar ... (2)
Przelomska, Natalia ... (2)
Persson, Claes, 1960 (2)
HINTZ, RL (2)
Sippell, WG (2)
Chase, M. W. (2)
Bellot, S. (2)
Ondo, I. (2)
Berenbaum, S (2)
Chrousos, G (2)
Cutler, G (2)
Keizer-Schrama, SD (2)
Donahoe, PK (2)
Donaldson, M (2)
visa färre...
Lärosäte
Göteborgs universitet (14)
Uppsala universitet (7)
Lunds universitet (4)
Karolinska Institutet (4)
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
visa fler...
Stockholms universitet (2)
Högskolan i Gävle (1)
Jönköping University (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy