SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Form S.) "

Sökning: WFRF:(Form S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aprile, E., et al. (författare)
  • Application and modeling of an online distillation method to reduce krypton and argon in XENON1T
  • 2022
  • Ingår i: Progress of Theoretical and Experimental Physics. - : Oxford University Press (OUP). - 2050-3911. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360 +/- 60) ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fitted to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove Ar-37 after its injection for a low-energy calibration in XENON1T. This makes the usage of Ar-37 as a regular calibration source possible in the future. The online distillation can be applied to next-generation liquid xenon time projection chamber experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large-scale detectors.
  •  
2.
  • Hennige, S. J., et al. (författare)
  • Self-recognition in corals facilitates deep-sea habitat engineering
  • 2014
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no 'self-recognition' on a broad species level. This study reveals areas of 'flawless' skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of 'self' between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.
  •  
3.
  • Zug, S., et al. (författare)
  • Technical Evaluation of the Carolo-Cup 2014 - A Competition for Self-Driving Miniature Cars
  • 2014
  • Ingår i: 12th IEEE International Symposium on RObotic and Sensors Environments (ROSE), Politehnica Univ Timisoara, Timisoara, ROMANIA, OCT 16-18, 2014. - : IEEE. - 9781479949274 ; , s. 100-105
  • Konferensbidrag (refereegranskat)abstract
    • The Carolo-Cup competition conducted for the eighth time this year, is an international student competition focusing on autonomous driving scenarios implemented on 1:10 scale car models. Three practical sub-competitions have to be realized in this context and represent a complex, interdisciplinary challenge. Hence, students have to cope with all core topics like mechanical development, electronic design, and programming as addressed usually by robotic applications. In this paper we introduce the competition challenges in detail and evaluate the results of all 13 participating teams from the 2014 competition. For this purpose, we analyze technical as well as non-technical configurations of each student group and derive best practices, lessons learned, and criteria as a precondition for a successful participation. Due to the comprehensive orientation of the Carolo-Cup, this knowledge can be applied on comparable projects and related competitions as well.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy