SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forsström Björn) "

Sökning: WFRF:(Forsström Björn)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edfors, Fredrik, et al. (författare)
  • Gene-specific correlation of RNA and protein levels in human cells and tissues
  • 2016
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.
  •  
2.
  • Abdellah, Tebani, et al. (författare)
  • Integration of molecular profiles in a longitudinal wellness profiling cohort.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies andimmune cell profiling, complementedwith gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
  •  
3.
  • Buus, S., et al. (författare)
  • High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays
  • 2012
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 11:12, s. 1790-1800
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against linear epitopes of the human proteome and obtained very detailed descriptions of the involved specificities. The epitopes identified ranged from 4 to 12 amino acids in size. In general, the antibodies were of exquisite specificity, frequently disallowing even single conservative substitutions. In several cases, multiple distinct epitopes could be identified for the same target protein, suggesting an efficient approach to the generation of paired antibodies. Two alternative epitope mapping approaches identified similar, although not necessarily identical, epitopes. These results show that ultrahigh-density peptide microarrays can be used for linear epitope mapping. With an upper theoretical limit of 2,000,000 individual peptides per array, these peptide microarrays may even be used for a systematic validation of antibodies at the proteomic level.
  •  
4.
  • Byström, Sanna, et al. (författare)
  • Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 4607-4619
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.
  •  
5.
  • Dodig-Crnkovic, Tea, et al. (författare)
  • Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling
  • 2020
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. Findings: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. Interpretation: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches.
  •  
6.
  •  
7.
  • Drobin, Kimi, et al. (författare)
  • Targeted Analysis of Serum Proteins Encoded at Known Inflammatory Bowel Disease Risk Loci
  • 2019
  • Ingår i: Inflammatory Bowel Diseases. - : Oxford University Press. - 1078-0998 .- 1536-4844. ; 25:2, s. 306-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential.Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected. Targeted serum protein profiles from 49 Crohn's disease (CD) patients, 51 ulcerative colitis (UC) patients, and 50 sex- and age-matched healthy individuals were obtained using multiplexed antibody suspension bead array assays. Differences in relative serum abundance levels between disease groups and controls were examined. Replication was attempted for CD-UC comparisons (including disease subtypes) by including 64 additional patients (33 CD and 31 UC). Antibodies targeting a potentially novel risk protein were validated by paired antibodies, Western blot, immuno-capture mass spectrometry, and epitope mapping.Results: By univariate analysis, 13 proteins mostly related to neutrophil, T-cell, and B-cell activation and function were differentially expressed in IBD patients vs healthy controls, 3 in CD patients vs healthy controls and 2 in UC patients vs healthy controls (q < 0.01). Multivariate analyses further differentiated disease groups from healthy controls and CD subtypes from UC (P < 0.05). Extended characterization of an antibody targeting a novel, discriminative serum marker, the laccase (multicopper oxidoreductase) domain containing 1 (LACC1) protein, provided evidence for antibody on-target specificity.Conclusions: Using affinity proteomics, we identified a set of IBD-associated serum proteins encoded at IBD risk loci. These candidate proteins hold the potential to be exploited as diagnostic biomarkers of IBD.
  •  
8.
  • Edfors, Fredrik, 1988-, et al. (författare)
  • A recombinant protein standard resource for targeted proteomics
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Here, we have used a resource of 26,000 recombinant protein fragments to create custom libraries of standards for targeted proteomics based on parallel reaction monitoring (PRM). The recombinant fragments can be produced in a bacterial cell factory to generate heavy isotope labeled standards for absolute quantification of the corresponding protein targets and be used to produce high- quality spectral libraries. Altogether, coordinates for 25,684 unique proteotypic peptide assays have been experimentally defined covering 10,163 human proteins. The protocol allows for precise monitoring of digestion kinetics and thus enables to select peptides that behave quantitative during the sample preparation process. We show that the quantification tag of each recombinant protein fragment can be used for accurate retention time prediction and allows for assay standardization across different method parameters. The use of this resource was illustrated by determining the absolute concentrations of selected protein targets using multiplex targeted proteomics assays for determination of quantitative assessment of 49 protein targets in serum samples. 
  •  
9.
  • Edfors, Fredrik, et al. (författare)
  • Enhanced validation of antibodies for research applications
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.
  •  
10.
  • Edfors, Fredrik, et al. (författare)
  • Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins
  • 2014
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:6, s. 1611-1624
  • Tidskriftsartikel (refereegranskat)abstract
    • AThe combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed.
  •  
11.
  • Edfors, Fredrik, et al. (författare)
  • Screening a Resource of Recombinant Protein Fragments for Targeted Proteomics
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:7, s. 2706-2718
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (<= 60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINAS, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.
  •  
12.
  • Edfors, Fredrik, 1988-, et al. (författare)
  • Validation of antibodies for Western blot applications using orthogonal methods
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is a great need for standardized validation methods for antibody specificity and selectivity. Here, we describe the use of orthogonal methods in which the specificity of an antibody in a particular application is determined based on correlation of protein abundance across several samples using an antibody-independent method. We show that pair-wise correlation between orthogonal samples can be used to score the specificity of antibodies in a standardized manner using a test panel of human cell lines. Here, we investigated two independent methods for validation of antibodies in Western blot applications, namely transcriptomics and targeted proteomics and we show that the two methods yield similar, but not identical results. The orthogonal methods can also be used to investigate on- and off- target binding for antibodies with multiple bands in the Western blot assay. In conclusion, orthogonal methods for antibody validation provide an attractive strategy for systematic validation of antibodies in a quantitative manner. 
  •  
13.
  • Edqvist, Per-Henrik D., et al. (författare)
  • Loss of ASRGL1 expression is an independent biomarker for disease-specific survival in endometrioid endometrial carcinoma
  • 2015
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 137:3, s. 529-537
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective For endometrial carcinoma, prognostic stratification methods do not satisfactorily identify patients with adverse outcome. Currently, histology, tumor grade and stage are used to tailoring surgical treatment and to determine the need for adjuvant treatment. Low-risk patients are not considered to require adjuvant therapy or staging lymphadenectomy. For patients with intermediate or high risk, some guidelines recommend tailoring adjuvant treatment according to additional negative prognostic factors. Our objective was to evaluate the biomarker potential of the ASRGL1 protein in endometrial carcinoma. Methods Using The Human Protein Atlas (www.proteinatlas.org), the l-asparaginase (ASRGL1) protein was identified as an endometrial carcinoma biomarker candidate. ASRGL1 expression was immunohistochemically evaluated with an extensively validated antibody on two independent endometrial carcinoma cohorts (n = 229 and n = 286) arranged as tissue microarrays. Staining results were correlated with clinical features. Results Reduced expression of ASRGL1, defined as < 75% positively stained tumor cells, was significantly associated with poor prognosis and reduced disease-specific survival in endometrioid endometrial adenocarcinoma (EEA). In multivariate analysis the hazard ratios for disease-specific survival were 3.55 (95% CI = 1.10-11.43; p = 0.003) and 3.23 (95% CI = 1.53-6.81; p = 0.002) in the two cohorts, respectively. Of the 48 cases with Grade 3 Stage I tumor all disease-related deaths were associated with low ASRGL1 expression. Conclusions Loss of ASRGL1 in EEA is a powerful biomarker for poor prognosis and retained ASRGL1 has a positive impact on survival. ASRGL1 immunohistochemistry has potential to become an additional tool for prognostication in cases where tailoring adjuvant treatment according to additional prognostic factors besides grade and stage is recommended.
  •  
14.
  • Forsström, Björn, 1983- (författare)
  • Characterization of antibody specificity using peptide array technologies
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Antibodies play an important role in the natural immune response to invading pathogens. The strong and specific binding to their antigens also make them indispensable tools for research, diagnostics and therapy.This thesis describes the development of methods for characterization of an- tibody specificity and the use of these methods to investigate the polyclonal antibody response after immunization. Paper I describes the development of an epitope-specific serum fractionation technique based on epitope map- ping using overlapping peptides followed by chromatographic separation of polyclonal serum. This technique together with another epitope mapping technique based on bacterial display of protein fragments were then used to generate antibody sandwich pairs (Paper I), investigate epitope variations of repeated immunizations (Paper II) and to determine the ratio of antibodies targeting linear and conformational epitopes of polyclonal antibodies (Paper III). Paper IV describes the optimization of in situ-synthesized high-density peptide arrays for epitope mapping and how different peptide lengths influ- ence epitope detection and resolution. In Paper V we show the development of planar peptide arrays covering the entire human proteome and how these arrays can be used for epitope mapping and off-target binding analysis. In Paper VI we show how polyclonal antibodies targeting linear epitopes can be used for peptide enrichment in a rapid, absolute protein quantification protocol based on mass spectrometry.Altogether these investigations demonstrate the usefulness of peptide arrays for fast and straightforward characterization of antibody specificity. The work also contributes to a deeper understanding of the polyclonal anti- body response obtained after immunization with recombinant protein frag- ments.
  •  
15.
  • Forsström, Björn, et al. (författare)
  • Dissecting Antibodies with Regards to Linear and Conformational Epitopes
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets.
  •  
16.
  • Hjelm, Barbara, et al. (författare)
  • Generation of monospecific antibodies based on affinity capture of polyclonal antibodies
  • 2011
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 20:11, s. 1824-1835
  • Tidskriftsartikel (refereegranskat)abstract
    • A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.
  •  
17.
  • Hjelm, Barbara, 1983-, et al. (författare)
  • Immunizations of inbred rabbits using the same antigen yield antibodies with similar, but not identical, epitopes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A problem for the generation of polyclonal antibodies is the potential difficulties to obtain a renewable resource due to batch-to-batch variations when the same antigen is immunized into several separate animals. Here, we have investigated this issue by determining the epitopes of antibodies generated from parallel immunizations of in-bred rabbits with recombinant antigens corresponding to ten human protein targets. The epitopes were mapped by both a suspension bead array approach using overlapping synthetic 15-mer peptides and a bacterial display approach using expression of random fragments of the antigen gene on the surface of bacteria. Both methods determined antibody binding with the aid of fluorescent-based analysis. In addition, one polyclonal antibody was fractionated by peptide-specific affinity capture for in-depth comparison of epitopes. The results show that the same antigen immunized in several in-bred rabbits yields polyclonal antibodies with similar epitopes, but with larger differences in the relative amounts of antibodies to the different epitopes. In some cases, unique epitopes were observed for one of the immunizations. The results suggest that polyclonal antibodies generated by repeated immunizations do not display an identical epitope pattern, although many of the epitopes are similar.
  •  
18.
  • Hjelm, Barbara, et al. (författare)
  • Parallel Immunizations of Rabbits Using the Same Antigen Yield Antibodies with Similar, but Not Identical, Epitopes
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12, s. e45817-
  • Tidskriftsartikel (refereegranskat)abstract
    • A problem for the generation of polyclonal antibodies is the potential difficulties for obtaining a renewable resource due to batch-to-batch variations when the same antigen is immunized into several separate animals. Here, we have investigated this issue by determining the epitopes of antibodies generated from parallel immunizations of rabbits with recombinant antigens corresponding to ten human protein targets. The epitopes were mapped by both a suspension bead array approach using overlapping synthetic 15-mer peptides and a bacterial display approach using expression of random fragments of the antigen on the surface of bacteria. Both methods determined antibody binding with the aid of fluorescent-based analysis. In addition, one polyclonal antibody was fractionated by peptide-specific affinity capture for in-depth comparison of epitopes. The results show that the same antigen immunized in several rabbits yields polyclonal antibodies with similar epitopes, but with larger differences in the relative amounts of antibodies to the different epitopes. In some cases, unique epitopes were observed for one of the immunizations. The results suggest that polyclonal antibodies generated by repeated immunizations do not display an identical epitope pattern, although many of the epitopes are similar.
  •  
19.
  • Hober, Andreas, et al. (författare)
  • Absolute Quantification of Apolipoproteins Following Treatment with Omega-3 Carboxylic Acids and Fenofibrate Using a High Precision Stable Isotope-labeled Recombinant Protein Fragments Based SRM Assay
  • 2019
  • Ingår i: Molecular & Cellular Proteomics. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 1535-9476 .- 1535-9484. ; 18:12, s. 2433-2446
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable isotope-labeled standard (SIS) peptides are used as internal standards in targeted proteomics to provide robust protein quantification, which is required in clinical settings. However, SIS peptides are typically added post trypsin digestion and, as the digestion efficiency can vary significantly between peptides within a protein, the accuracy and precision of the assay may be compromised. These drawbacks can be remedied by a new class of internal standards introduced by the Human Protein Atlas project, which are based on SIS recombinant protein fragments called SIS PrESTs. SIS PrESTs are added initially to the sample and SIS peptides are released on trypsin digestion. The SIS PrEST technology is promising for absolute quantification of protein biomarkers but has not previously been evaluated in a clinical setting. An automated and scalable solid phase extraction workflow for desalting and enrichment of plasma digests was established enabling simultaneous preparation of up to 96 samples. Robust high-precision quantification of 13 apolipoproteins was achieved using a novel multiplex SIS PrEST-based LC-SRM/MS Tier 2 assay in non-depleted human plasma. The assay exhibited inter-day coefficients of variation between 1.5% and 14.5% (median = 3.5%) and was subsequently used to investigate the effects of omega-3 carboxylic acids (OM3-CA) and fenofibrate on these 13 apolipoproteins in human plasma samples from a randomized placebo-controlled trial, EFFECT I (NCT02354976). No significant changes were observed in the OM3-CA arm, whereas treatment with fenofibrate significantly increased apoAII and reduced apoB, apoCI, apoE and apoCIV levels. The reduction in apoCIV following fenofibrate treatment is a novel finding. The study demonstrates that SIS PrESTs can facilitate the generation of robust multiplexed biomarker Tier 2 assays for absolute quantification of proteins in clinical studies. Applications of LC-SRM in clinical research are still limited. SIS PrEST are a novel class of standards added prior to trypsinization. We have developed a semi-automated sample preparation workflow and a SIS PrEST LC-SRM/MS Tier 2 assay for absolute quantification of 13 apolipoproteins in human plasma and applied it on clinical samples from the EFFECT I study. We demonstrate, for the first time, that SIS PrEST can be applied for exploratory biomarker research in clinical settings and capture drug effects.
  •  
20.
  • Hober, Andreas, 1992- (författare)
  • Development of novel affinity enrichment strategies for clinical applications using selected reaction monitoring
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are key components of any living organism and an essential part of life itself. They can provide cells with structure and perform life-sustaining intracellular reactions. As organisms grow more complex, this task expands even further. The proteins’ areas of responsibility suddenly also include communication and coordination between cells and throughout entire organisms, such as the human body. Everything that can be touched and felt on a living organism is composed of millions and millions of proteins tightly packed together. They are even the molecules responsible for propagating the signals that make up the sense of feeling. Understanding the role of proteins in the complex system of life is essential for understanding what makes up a healthy human and what causes disease. This knowledge makes up the foundation of modern medicine, and to further this knowledge, allowing for new treatments and preventative interventions, the study of proteins is crucial. The large-scale study of proteins, proteomics, is an extensive field of research where a vast toolbox of technologies has been implemented. The foundation for this toolbox is made up of mass spectrometry- and affinity-based technologies.In this thesis, both mass spectrometry-based proteomics and affinity-based proteomics will be explored. The first part, Paper I and Paper II, describe the use of selected reaction monitoring for measuring proteins of clinical relevance in human blood plasma. The second part, Paper III and Paper IV, highlight the importance of validating reagents used for affinity-based proteomics and how this can be achieved in a high throughput manner. Lastly, Paper V showcases how a combined strategy, relying on both affinity-based proteomics and mass spectrometry-based proteomics, can capitalize on the best properties of each technology and how this combined strategy can even be utilized for diagnostic purposes.
  •  
21.
  • Hober, Andreas, 1992-, et al. (författare)
  • Evaluation of an enhanced antibody-validation strategy for Western blot applications based on migration pattern recognition
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The use of affinity reagents, such as antibodies, for studying specific molecules in complex backgrounds are some of the most powerful tools for researchers in molecular biology. However, all experiments performed using affinity reagents are directly affected by each reagent’s context-dependent ability to bind specifically to a target of interest. A growing issue with non-validated, or poorly validated affinity reagents, has been highlighted by the International Working Group for Antibody Validation (IWGAV). It has been suggested that antibodies should be evaluated in an application-specific manner since they can perform well in one application but fail to deliver reproducible results in another. One of the most commonly used antibody-based applications is the Western blot (WB) technology. When evaluating the result from a WB experiment, the initial measure used for determining whether or not the antibody binds the protein of interest is to determine the molecular weight of the protein detected by the antibody compared to a set of reference proteins. As WB relies on the SDS-PAGE for separating differently sized proteins, the comparison is actually based on protein migration during electrophoresis. It is, however, well known that the migration of a protein can differ significantly from how the reference proteins migrate. Here, we suggest a method for determining the actual migration patterns of proteins instead of relying on the theoretical molecular weight of the protein. Using this approach, called migration capture mass spectrometry (MS), a dataset containing the migration patterns of more than 39,000 protein products from more than 10,500 genes across eleven cell lines and tissues has been created. This migration capture MS approach has been validated using k-fold cross validation against 249 siRNA knockdown WBs showing that the method has a sensitivity of 96.4%, specificity of 87.4% and accuracy of 91.9%, which makes the dataset a useful resource that can facilitate antibody validation strategies in a fit-for-purpose manner. The data set has allowed the automatic evaluation of more than 12,000 antibodies in the Human Protein Atlas using the method.
  •  
22.
  • Hober, Andreas, 1992-, et al. (författare)
  • Targeted Proteomics Using Stable Isotope Labeled Protein Fragments Enables Precise and Robust Determination of Total Apolipoprotein(a) in Human Plasma
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allows for the determination of molar concentration and relative size of apo(a) in individuals.
  •  
23.
  • Hober, Andreas, 1992-, et al. (författare)
  • Targeted proteomics using stable isotope labeled protein fragments enables precise and robust determination of total apolipoprotein(a) in human plasma
  • 2023
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:2 February
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/ MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.
  •  
24.
  •  
25.
  • Häggmark, Anna, et al. (författare)
  • Plasma profiling revelas three proteins associated to amyotrophic lateral sclerosis
  • 2014
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 1:8, s. 544-553
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease leading to muscular paralysis and death within 3-5 years from onset. Currently, there are no reliable and sensitive markers able to substantially shorten the diagnosis delay. The objective of the study was to analyze a large number of proteins in plasma from patients with various clinical phenotypes of ALS in search for novel proteins or protein profiles that could serve as potential indicators of disease.METHODS: Affinity proteomics in the form of antibody suspension bead arrays were applied to profile plasma samples from 367 ALS patients and 101 controls. The plasma protein content was directly labeled and protein profiles obtained using 352 antibodies from the Human Protein Atlas targeting 278 proteins. A focused bead array was then built to further profile eight selected protein targets in all available samples.RESULTS: Disease-associated significant differences were observed and replicated for profiles from antibodies targeting the proteins: neurofilament medium polypeptide (NEFM), solute carrier family 25 (SLC25A20), and regulator of G-protein signaling 18 (RGS18).INTERPRETATION: Upon further validation in several independent cohorts with inclusion of a broad range of other neurological disorders as controls, the alterations of these three protein profiles in plasma could potentially provide new molecular markers of disease that contribute to the quest of understanding ALS pathology.
  •  
26.
  • Häggmark-Månberg, Anna, et al. (författare)
  • Autoantibody targets in vaccine-associated narcolepsy
  • 2016
  • Ingår i: Autoimmunity. - : Taylor & Francis. - 0891-6934 .- 1607-842X. ; 49:6, s. 421-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Narcolepsy is a chronic sleep disorder with a yet unknown cause, but the specific loss of hypocretin-producing neurons together with a strong human leukocyte antigen (HLA) association has led to the hypothesis that autoimmune mechanisms might be involved. Here, we describe an extensive effort to profile autoimmunity repertoires in serum with the aim to find disease-related autoantigens. Initially, 57 serum samples from vaccine-associated and sporadic narcolepsy patients and controls were screened for IgG reactivity towards 10 846 fragments of human proteins using planar microarrays. The discovered differential reactivities were verified on suspension bead arrays in the same sample collection followed by further investigation of 14 antigens in 176 independent samples, including 57 narcolepsy patients. Among these 14 antigens, methyltransferase-like 22 (METTL22) and 5'-nucleotidase cytosolic IA (NT5C1A) were recognized at a higher frequency in narcolepsy patients of both sample sets. Upon sequence analysis of the 14 proteins, polymerase family, member 3 (PARP3), acyl-CoA-binding domain containing 7 (ARID4B), glutaminase 2 (GLS2) and cyclin-dependent kinase-like 1 (CDKL1) were found to contain amino acid sequences with homology to proteins found in the H1N1 vaccine. These findings could become useful elements of further clinical assays that aim towards a better phenotypic understanding of narcolepsy and its triggers.
  •  
27.
  • Jahn, Michael, et al. (författare)
  • Growth of Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation Proteins
  • 2018
  • Ingår i: Cell Reports. - : et al.. - 2211-1247. ; 25:2, s. 478-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria must balance separate demands for energy generation, carbon assimilation, and biomass synthesis. We used shotgun proteomics to investigate proteome allocation strategies in the model cyanobacterium Synechocystis sp. PCC 6803 as it adapted to light and inorganic carbon (C-i) limitation. When partitioning the proteome into seven functional sectors, we find that sector sizes change linearly with growth rate. The sector encompassing ribosomes is significantly smaller than in E. coli, which may explain the lower maximum growth rate in Synechocystis. Limitation of light dramatically affects multiple proteome sectors, whereas the effect of C-i limitation is weak. Carbon assimilation proteins respond more strongly to changes in light intensity than to C-i. A coarse-grained cell economy model generally explains proteome trends. However, deviations from model predictions suggest that the large proteome sectors for carbon and light assimilation are not optimally utilized under some growth conditions and may constrain the proteome space available to ribosomes.
  •  
28.
  • Jahn, Michael, et al. (författare)
  • Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
  • 2021
  • Ingår i: eLIFE. - : eLIFE SCIENCES PUBL LTD. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.
  •  
29.
  • Johansson, Camilla, 1993-, et al. (författare)
  • Orthogonal proteomics methods warrant the development of Duchenne muscular dystrophy biomarkers
  • 2023
  • Ingår i: Clinical Proteomics. - : Springer Nature. - 1542-6416 .- 1559-0275. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMolecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools.MethodsTwo technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS).ResultsFive, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml.ConclusionsThese results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.
  •  
30.
  • Kotol, David, et al. (författare)
  • Longitudinal Plasma Protein Profiling Using Targeted Proteomics and Recombinant Protein Standards
  • 2020
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 19:12, s. 4815-4825
  • Tidskriftsartikel (refereegranskat)abstract
    • Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.
  •  
31.
  • Li, Xiangyu, et al. (författare)
  • Discovery of Functional Alternatively Spliced PKM Transcripts in Human Cancers
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:2, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and is a mediator of the Warburg effect in tumors. The association of PKM with survival of cancer patients is controversial. In this study, we investigated the associations of the alternatively spliced transcripts of PKM with cancer patients' survival outcomes and explained the conflicts in previous studies. We discovered three poorly studied alternatively spliced PKM transcripts that exhibited opposite prognostic indications in different human cancers based on integrative systems analysis. We also detected their protein products and explored their potential biological functions based on in-vitro experiments. Our analysis demonstrated that alternatively spliced transcripts of not only PKM but also other genes should be considered in cancer studies, since it may enable the discovery and targeting of the right protein product for development of the efficient treatment strategies. Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and plays an important oncological role in cancer. However, the association of PKM expression and the survival outcome of patients with different cancers is controversial. We employed systems biology methods to reveal prognostic value and potential biological functions of PKM transcripts in different human cancers. Protein products of transcripts were shown and detected by western blot and mass spectrometry analysis. We focused on different transcripts of PKM and investigated the associations between their mRNA expression and the clinical survival of the patients in 25 different cancers. We find that the transcripts encoding PKM2 and three previously unstudied transcripts, namely ENST00000389093, ENST00000568883, and ENST00000561609, exhibited opposite prognostic indications in different cancers. Moreover, we validated the prognostic effect of these transcripts in an independent kidney cancer cohort. Finally, we revealed that ENST00000389093 and ENST00000568883 possess pyruvate kinase enzymatic activity and may have functional roles in metabolism, cell invasion, and hypoxia response in cancer cells. Our study provided a potential explanation to the controversial prognostic indication of PKM, and could invoke future studies focusing on revealing the biological and oncological roles of these alternative spliced variants of PKM.
  •  
32.
  • Qundos, Ulrika, et al. (författare)
  • Affinity proteomics discovers decreased levels of AMFR in plasma from Osteoporosis patients
  • 2016
  • Ingår i: PROTEOMICS - Clinical Applications. - : Wiley-Blackwell. - 1862-8346 .- 1862-8354. ; 10:6, s. 681-690
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Affinity proteomic approaches by antibody bead arrays enable multiplexed analysis of proteins in body fluids. In the presented study, we investigated blood plasma within osteoporosis to discovery differential protein profiles and to propose novel biomarkers candidates for subsequent studies. Experimental design: Starting with 4608 antibodies and plasma samples from 22 women for an untargeted screening, a set of 72 proteins were suggested for further analysis. Complementing these with targets from literature and other studies, a targeted bead array of 180 antibodies was built to profile for 92 proteins in plasma samples of 180 women from two independent population-based studies. Results: Differential profiles between osteoporosis patients and matched controls were discovered for 12 proteins in at least one of the two study sets. Among these targets, the levels of autocrine motility factor receptor (AMFR) were concordantly lower in plasma of female osteoporosis patients. Subsequently, verification of anti-AMFR antibody selectivity was conducted using high-density peptide and protein arrays, and Western blotting. Conclusions and clinical relevance: Further validation in additional study sets will be needed to determine the clinical value of the observed decrease in AMFR plasma levels in osteoporosis patients, but AMFR may aid our understanding of disease mechanisms and could support existing tools for diagnosis and monitoring of patient mobility within osteoporosis.
  •  
33.
  • Sahlstrom, Peter, et al. (författare)
  • Different Hierarchies of Anti-Modified Protein Autoantibody Reactivities in Rheumatoid Arthritis
  • 2020
  • Ingår i: Arthritis & Rheumatology. - : WILEY. - 2326-5191 .- 2326-5205. ; 72:10, s. 1643-1657
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Anti-citrullinated protein antibodies (ACPAs) are a hallmark of seropositive rheumatoid arthritis (RA). Yet, the precise disease-relevant autoantigens that are targeted by ACPAs remains a matter of debate. This study utilized patient-derived monoclonal ACPAs, rather than serum autoantibody analysis, to characterize the multireactivity to different protein modifications and to reveal autoantibody subsets in patients with RA. Methods. Twelve human monoclonal ACPAs (positive by the second-generation cyclic citrullinated peptide test) were generated from 6 RA patients, and a head-to-head comparison of their reactivities was performed. For profiling, we used a complementary DNA-based protein array (Engine GmbH) and 3 peptide-screening platforms with RA autoantigens (Thermo Fisher Scientific), citrullinated and carbamylated peptides (NimbleGen/Roche), or histonederived peptides with different posttranslational modifications (JPT Histone Code), covering >207,000 peptides (>7,800 gene products). Results. The fine-specificity profiles of the investigated ACPAs varied, but all of the monoclonal ACPAs displayed multireactivity to a large number of citrullinated peptides/proteins, each characterized by specific binding properties. ACPA subsets could be defined by clone-distinct consensus binding motifs (e.g., Cit-Gly, Gly-Cit, or Arg-Cit-Asp), with the most common ACPA recognition being that of a Gly in the +1 flanking position, but with additional amino acid preferences. For ACPA protein recognition, we observed a preference for citrullinated RNA-binding proteins with high Arg/Gly content. Six of the 12 ACPA clones also bound acetylated-lysine (KAc) or homocitrulline peptide motifs, displaying a similar affinity or higher apparent affinity than that for Cit peptides. Conclusion. ACPAs and anti-modified protein autoantibodies represent overlapping facets of RA autoimmunity and bind to a wide variety of modified proteins, extending well beyond the historically recognized set of RA autoantigens. So far, KAc reactivity has been detected only in the context of anti-Carb and anti-Cit peptide autoantibody responses, postulating the existence of hierarchies of autoreactivity in RA. Future investigations of ACPA fine specificities and functionality should take into consideration the presence of consensus Cit/Carb/KAc motifs and the multireactivity of these autoantibodies in patients with RA.
  •  
34.
  •  
35.
  • Steen, Johanna, et al. (författare)
  • Recognition of Amino Acid Motifs, Rather Than Specific Proteins, by Human Plasma Cell-Derived Monoclonal Antibodies to Posttranslationally Modified Proteins in Rheumatoid Arthritis
  • 2019
  • Ingår i: Arthritis & Rheumatology. - : WILEY. - 2326-5191 .- 2326-5205. ; 71:2, s. 196-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Antibodies against posttranslationally modified proteins are a hallmark of rheumatoid arthritis (RA), but the emergence and pathogenicity of these autoantibodies are still incompletely understood. The aim of this study was to analyze the antigen specificities and mutation patterns of monoclonal antibodies (mAb) derived from RA synovial plasma cells and address the question of antigen cross-reactivity.Methods: IgG-secreting cells were isolated from RA synovial fluid, and the variable regions of the immunoglobulins were sequenced (n = 182) and expressed in full-length mAb (n = 93) and also as germline-reverted versions. The patterns of reactivity with 53,019 citrullinated peptides and 49,211 carbamylated peptides and the potential of the mAb to promote osteoclastogenesis were investigated.Results: Four unrelated anti-citrullinated protein autoantibodies (ACPAs), of which one was clonally expanded, were identified and found to be highly somatically mutated in the synovial fluid of a patient with RA. The ACPAs recognized >3,000 unique peptides modified by either citrullination or carbamylation. This highly multireactive autoantibody feature was replicated for Ig sequences derived from B cells from the peripheral blood of other RA patients. The plasma cell-derived mAb were found to target distinct amino acid motifs and partially overlapping protein targets. They also conveyed different effector functions as revealed in an osteoclast activation assay.Conclusion: These findings suggest that the high level of cross-reactivity among RA autoreactive B cells is the result of different antigen encounters, possibly at different sites and at different time points. This is consistent with the notion that RA is initiated in one context, such as in the mucosal organs, and thereafter targets other sites, such as the joints.
  •  
36.
  • Tegel, Hanna, et al. (författare)
  • High throughput generation of a resource of the human secretome in mammalian cells
  • 2020
  • Ingår i: New Biotechnology. - : Elsevier BV. - 1871-6784 .- 1876-4347. ; 58, s. 45-54
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic beta-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome.
  •  
37.
  • The, Matthew, et al. (författare)
  • A Protein Standard That Emulates Homology for the Characterization of Protein Inference Algorithms
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:5, s. 1879-1886
  • Tidskriftsartikel (refereegranskat)abstract
    • A natural way to benchmark the performance of an analytical experimental setup is to use samples of known measured analytes are peptides and not the actual proteins one of the inherent problems of interpreting data is that the composition and see to what degree one can correctly infer the content of such a sample from the data. For shotgun proteomics, themselves. As some proteins share proteolytic peptides, there might be more than one possible causative set of proteins resulting in a given set of peptides and there is a need for mechanisms that infer proteins from lists of detected peptides. A weakness of commercially available samples of known content is that they consist of proteins that are deliberately selected for producing tryptic peptides that are unique to a single protein. Unfortunately, such samples do not expose any complications in protein inference. Hence, for a realistic benchmark of protein inference procedures, there is a need for samples of known content where the present proteins share peptides with known absent proteins. Here, we present such a standard, that is based on E. coli expressed human protein fragments. To illustrate the application of this standard, we benchmark a set of different protein inference procedures on the data. We observe that inference procedures excluding shared peptides provide more accurate estimates of errors compared to methods that include information from shared peptides, while still giving a reasonable performance in terms of the number of identified proteins. We also demonstrate that using a sample of known protein content without proteins with shared tryptic peptides can give a false sense of accuracy for many protein inference methods.
  •  
38.
  • Uhlén, Mathias, et al. (författare)
  • A genome-wide transcriptomic analysis of protein-coding genes in human blood cells
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 366:6472, s. 1471-
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood is the predominant source for molecular analyses in humans, both in clinical and research settings. It is the target for many therapeutic strategies, emphasizing the need for comprehensive molecular maps of the cells constituting human blood. In this study, we performed a genome-wide transcriptomic analysis of protein-coding genes in sorted blood immune cell populations to characterize the expression levels of each individual gene across the blood cell types. All data are presented in an interactive, open-access Blood Atlas as part of the Human Protein Atlas and are integrated with expression profiles across all major tissues to provide spatial classification of all protein-coding genes. This allows for a genome-wide exploration of the expression profiles across human immune cell populations and all major human tissues and organs.
  •  
39.
  • Uhlén, Mathias, et al. (författare)
  • The human secretome
  • 2019
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 12:609
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
  •  
40.
  • Wayne, Greg, et al. (författare)
  • Principles of Systems Biology, No. 11
  • 2016
  • Ingår i: CELL SYSTEMS. - : CELL PRESS. - 2405-4712. ; 3:5, s. 406-410
  • Tidskriftsartikel (refereegranskat)abstract
    • This month: AI that learns patterns and facts, new protein-RNA and protein-protein relationships, engineering signaling and metabolism, and more variants of Cas9.
  •  
41.
  • Zandian, Arash, et al. (författare)
  • Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy
  • 2017
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 16:3, s. 1300-1314
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying molecular mechanisms of autoimmune diseases are poorly understood. To unravel the autoimmune processes across diseases, comprehensive and unbiased analyses of proteins targets recognized by the adaptive immune system are needed. Here we present an approach starting from high-density peptide arrays to characterize autoantibody repertoires and to identify new autoantigens. A set of ten plasma and serum samples from subjects with multiple sclerosis, narcolepsy, and without any disease diagnosis were profiled on a peptide array representing the whole proteome, hosting 2.2 million 12-mer peptides with a six amino acid lateral shift. On the basis of the IgG reactivities found on these whole-proteome peptide micro arrays, a set of 23 samples was then studied on a targeted array with 174 000 12-mer peptides of single amino acid lateral shift. Finally, verification of IgG reactivities was conducted with a larger sample set (n = 448) using the bead-based peptide microarrays. The presented workflow employed three different peptide microarray formats to discover and resolve the epitopes of human autoantibodies and revealed two potentially new autoantigens: MAP3K7 in multiple sclerosis and NRXN1 in narcolepsy. The presented strategy provides insights into antibody repertoire reactivity at a peptide level and may accelerate the discovery and validation of autoantigens in human diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41
Typ av publikation
tidskriftsartikel (32)
annan publikation (7)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Forsström, Björn (39)
Uhlén, Mathias (32)
Edfors, Fredrik (18)
Nilsson, Peter (13)
Schwenk, Jochen M. (12)
Hong, Mun-Gwan (7)
visa fler...
Kotol, David (7)
Rockberg, Johan (7)
Sivertsson, Åsa (6)
von Feilitzen, Kalle (6)
Fagerberg, Linn (6)
Pontén, Fredrik (5)
Lundberg, Emma (5)
Fredolini, Claudia (5)
Mardinoglu, Adil (4)
Gummesson, Anders, 1 ... (4)
Bergström, Göran, 19 ... (4)
Oksvold, Per (3)
Zhong, Wen (3)
Dodig-Crnkovic, Tea (3)
Zhang, Cheng (3)
Odeberg, Jacob, Prof ... (3)
Lindskog, Cecilia (3)
Boström, Tove (3)
Klareskog, Lars (3)
Oscarsson, Jan (3)
Danielsson, Frida (3)
Steen, Johanna (3)
Zwahlen, Martin (3)
Al-Khalili Szigyarto ... (2)
Nielsen, Jens B, 196 ... (2)
Abdellah, Tebani (2)
Lakshmikanth, Tadepa ... (2)
Hellström, Cecilia (2)
Karlsson, Max (2)
Arif, Muhammad (2)
Mikes, Jaromir (2)
Danielsson, Hanna (2)
Brodin, Petter (2)
Greco, Dario (2)
Hober, Sophia (2)
Catrina, Anca I (2)
Käll, Lukas, 1969- (2)
Hansson, Monika (2)
Sandberg, Kristian (2)
Häussler, Ragna S. (2)
Löfblom, John (2)
Malmström, Vivianne (2)
D'Amato, Mauro (2)
Hudson, Elton P. (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (41)
Karolinska Institutet (14)
Uppsala universitet (10)
Göteborgs universitet (5)
Chalmers tekniska högskola (2)
Umeå universitet (1)
visa fler...
Örebro universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Medicin och hälsovetenskap (24)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy