SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fouchier R A M) "

Sökning: WFRF:(Fouchier R A M)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Teslovich, Tanya M., et al. (författare)
  • Biological, clinical and population relevance of 95 loci for blood lipids
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7307, s. 707-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P<5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
  •  
3.
  • Muhlemann, B., et al. (författare)
  • Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:29, s. 7557-7562
  • Tidskriftsartikel (refereegranskat)abstract
    • Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to similar to 70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from similar to 0.5 to similar to 6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed similar to 12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to similar to 5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.
  •  
4.
  • Caliendo, V, et al. (författare)
  • Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021
  • 2022
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe, Africa and North America but are currently absent from South America and Oceania. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John's, Newfoundland and Labrador, Canada. Our phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Our analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.
  •  
5.
  • Muhlemann, B., et al. (författare)
  • Ancient hepatitis B viruses from the Bronze Age to the Medieval period
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 557:7705, s. 418-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 x 10(-6-)1.51 x 10(-5) nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages(1,2). We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.
  •  
6.
  • Wallensten, Anders, et al. (författare)
  • High prevalence of influenza A virus in ducks caught during spring migration through Sweden
  • 2006
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 24 (44-46), s. 6734-6735
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of our ongoing screening of wild birds in Northern Europe, 358 mallards (Anas platyrhynchos) and 203 shelducks (Tadorna tadorna) were caught in southern Sweden during the spring 2003. Faecal samples were analyzed by real time RT-PCR for the presence of influenza A virus. In contrast to what has been found in North American studies, Eurasian spring migrating ducks passing through Sweden had a relatively high prevalence of influenza A virus. © 2006 Elsevier Ltd. All rights reserved.
  •  
7.
  • Wahlgren, J., et al. (författare)
  • Gene segment reassortment between American and Asian lineages of avian influenza virus from waterfowl in the Beringia area
  • 2008
  • Ingår i: Vector Borne and Zoonotic Diseases. - : Mary Ann Liebert Inc. - 1530-3667 .- 1557-7759. ; 8:6, s. 783-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Since prehistoric times, the Bering Strait area (Beringia) has served as an avenue of dispersal between the Old and the New Worlds. On a field expedition to this area, we collected fecal samples from dabbling ducks, geese, shorebirds, and gulls on the Chukchi Peninsula, Siberia, and Pt. Barrow, Alaska, and characterized the subtypes of avian influenza virus present in them. Four of 202 samples (2%) from Alaska were positive for influenza A virus RNA in two independent polymerase chain reaction (PCR)-based screening assays, while all shorebird samples from the Chukchi Peninsula were negative. Subtypes H3N8 and H6N1 were recorded once, while subtype H8N4 was found in two samples. Full-length sequences were obtained from the three unique isolates, and phylogenetic analysis with representative sequences for the Eurasian and North American lineages of influenza A virus showed that one HA gene clustered with the Eurasian rather than the North American lineage. However, the closest relative to this sequence was a North American isolate from Delaware described in 2002, indicating that a H6 spillover from Asia has established itself in North America.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Latorre-Margalef, Neus, et al. (författare)
  • Effects of influenza A virus infection on migrating mallard ducks
  • 2009
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 276:1659, s. 1029-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • The natural reservoir of influenza A virus is waterfowl, particularly dabbling ducks (genus Anas). Although it has long been assumed that waterfowl are asymptomatic carriers of the virus, a recent study found that low-pathogenic avian influenza (LPAI) infection in Bewick's swans (Cygnus columbianus bewickii) negatively affected stopover time, body mass and feeding behaviour. In the present study, we investigated whether LPAI infection incurred ecological or physiological costs to migratory mallards (Anas platyrhynchos) in terms of body mass loss and staging time, and whether such costs could influence the likelihood for long-distance dispersal of the avian influenza virus by individual ducks. During the autumn migrations of 2002-2007, we collected faecal samples (n = 10 918) and biometric data from mallards captured and banded at Ottenby, a major staging site in a flyway connecting breeding and wintering areas of European waterfowl. Body mass was significantly lower in infected ducks than in uninfected ducks (mean difference almost 20 g over all groups), and the amount of virus shed by infected juveniles was negatively correlated with body mass. There was no general effect of infection on staging time, except for juveniles in September, in which birds that shed fewer viruses stayed shorter than birds that shed more viruses. LPAI infection did not affect speed or distance of subsequent migration. The data from recaptured individuals showed that the maximum duration of infection was on average 8.3 days (s.e. 0.5), with a mean minimum duration of virus shedding of only 3.1 days (s.e. 0.1). Shedding time decreased during the season, suggesting that mallards acquire transient immunity for LPAI infection. In conclusion, deteriorated body mass following infection was detected, but it remains to be seen whether this has more long-term fitness effects. The short virus shedding time suggests that individual mallards are less likely to spread the virus at continental or intercontinental scales.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Wallensten, Anders, et al. (författare)
  • Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot (Uria aalge).
  • 2005
  • Ingår i: Archives of Virology. - : Springer Science and Business Media LLC. - 0304-8608 .- 1432-8798. ; 150:8, s. 1685-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Guillemots banded in the northern Baltic Sea were screened for influenza A virus (IAV). Three out of 26 sampled birds tested positive by RT-PCR. Two of these were characterized as subtype H6N2. Phylogenetic analyses showed that five gene segments belonged to the American avian lineage of IAVs, whereas three gene segments belonged to the Eurasian lineage. Our findings indicate that avian IAVs may have a taxonomically wider reservoir spectrum than previously known and we present the first report of a chimeric avian IAV with genes of American and Eurasian origin in Europe.
  •  
21.
  •  
22.
  • Gunnarsson, Gunnar, et al. (författare)
  • Disease Dynamics and Bird Migration – Linking Mallards Anas platyrhynchos and subtype diversity of Influenza A Virus in Time and Space
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:4, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and transmitted to conspecifics during subsequent staging during migration, and so a better understanding of the natal origin of staging ducks is vital to deciphering the dynamics of viral movement pathways. Ottenby is an important stopover site in southeast Sweden almost halfway downstream in the major Northwest European flyway, and is used by millions of waterfowl each year. Here, mallards were captured and sampled for influenza A virus infection, and positive samples were subtyped in order to study possible links to the natal area, which were determined by a novel approach combining banding recovery data and isotopic measurements (d2 H) of feathers grown on breeding grounds. Geographic assignments showed that the core natal areas of studied mallards were in Estonia, southern and central Finland, and northwestern Russia. This study demonstrates a clear temporal succession of latitudes of natal origin during the course of autumn migration. We also demonstrate a corresponding and concomitant shift in virus subtypes. Acknowledging that these two different patterns were based in part upon different data, a likely interpretation worth further testing is that the early arriving birds with more proximate origins have different influenza A subtypes than the more distantly originating late autumn birds. If true, this knowledge would allow novel insight into the origins and transmission of the influenza A virus among migratory hosts previously unavailable through conventional approaches.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Verhagen, Josanne H., et al. (författare)
  • Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds : Towards improvement of surveillance programs
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.
  •  
27.
  • Artois, M., et al. (författare)
  • Outbreaks of highly pathogenic avian influenza in Europe : the risks associated with wild birds
  • 2009
  • Ingår i: Revue scientifique et technique (International Office of Epizootics). - : O.I.E (World Organisation for Animal Health). - 0253-1933 .- 1608-0637. ; 28:1, s. 69-92
  • Forskningsöversikt (refereegranskat)abstract
    • The infection of wild birds by highly pathogenic strains of avian influenza (Al) virus was virtually unknown--apart from one instance of the disease appearing in common terns in South Africa in 1961--before the Asian strain of highly pathogenic AI virus (AIV), H5N1, began to expand across the world. Outbreaks of clinical disease in Eurasia have resulted in visible mortality among populations of free-ranging wild birds in a multitude of species. The circulation pattern of influenza viruses in natural ecosystems results from a selection pressure towards strains which are indirectly transmitted by droppings from water birds and contaminated fomites, and which exhibit low pathogenicity. Some of these viruses, of the subtypes H5 or H7, can mutate into highly pathogenic strains after being introduced into domestic poultry farms. The maintenance of highly pathogenic AIV (HPAIV) H5N1 in several parts of the world exposes wild birds to infected poultry, resulting in long-distance virus transmission. There is great concern that these wild birds may, in turn, propagate these HPAIV or introduce them into domestic birds. Rigorous disease control and biosecurity measures to protect poultry farms are the only solution presently available to mitigate such a risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy