SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fraga Mario F.) "

Sökning: WFRF:(Fraga Mario F.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jacobsen, Stine C., et al. (författare)
  • Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:6, s. 1154-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. Methods DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. Results After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (chi(2), p < 0.001). Conclusions/interpretation Our results indicate lower DNA methylation plasticity in skeletal muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.
  •  
2.
  • Esteller, Manel, et al. (författare)
  • DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis
  • 2001
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 10:26, s. 3001-3007
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells have aberrant patterns of DNA methylation including hypermethylation of gene promoter CpG islands and global demethylation of the genome. Genes that cause familial cancer, as well as other genes, can be silenced by promoter hypermethylation in sporadic tumors, but the methylation of these genes in tumors from kindreds with inherited cancer syndromes has not been well characterized. Here, we examine CpG island methylation of 10 genes (hMLH1, BRCA1, APC, LKB1, CDH1, p16(INK4a), p14(ARF), MGMT, GSTP1 and RARbeta2) and 5-methylcytosine DNA content, in inherited (n = 342) and non-inherited (n = 215) breast and colorectal cancers. Our results show that singly retained alleles of germline mutated genes are never hypermethylated in inherited tumors. However, this epigenetic change is a frequent second "hit", associated with the wild-type copy of these genes in inherited tumors where both alleles are retained. Global hypomethylation was similar between sporadic and hereditary cases, but distinct differences existed in patterns of methylation at non-familial genes. This study demonstrates that hereditary cancers "mimic" the DNA methylation patterns present in the sporadic tumors.
  •  
3.
  • Ropero, Santiago, et al. (författare)
  • Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells.
  • 2004
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 13:22, s. 2753-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations in the Exostoses-1 gene (EXT1) are found in hereditary multiple exostoses syndrome, which is characterized by the formation of osteochondromas and an increased risk of chondrosarcomas and osteosarcomas. However, despite its putative tumor-suppressor function, little is known of the contribution of EXT1 to human sporadic malignancies. Here, we report that EXT1 function is abrogated in human cancer cells by transcriptional silencing associated with CpG island promoter hypermethylation. We also show that, at the biochemical and cellular levels, the epigenetic inactivation of EXT1, a glycosyltransferase, leads to the loss of heparan sulfate (HS) synthesis. Reduced HS production can be reversed by the use of a DNA demethylating agent. Furthermore, the re-introduction of EXT1 into cancer cell lines displaying methylation-dependent silencing of EXT1 induces tumor-suppressor-like features, e.g. reduced colony formation density and tumor growth in nude mouse xenograft models. Screening a large collection of human cancer cell lines (n=79) and primary tumors (n=454) from different cell types, we found that EXT1 CpG island hypermethylation was common in leukemia, especially acute promyelocytic leukemia and acute lymphoblastic leukemia, and non-melanoma skin cancer. These findings highlight the importance of EXT1 epigenetic inactivation, leading to an abrogation of HS biosynthesis, in the processes of tumor onset and progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy