SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Franco Leandro R.) "

Sökning: WFRF:(Franco Leandro R.)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Raw, Juliana, et al. (författare)
  • Unveiling the Three-Step Model for the Interaction of Imidazolium-Based Ionic Liquids on Albumin
  • 2023
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8, s. 38101-38110
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the ionic liquids (ILs) 1-methyl-3-tetradecylimidazolium chloride ([C14MIM][Cl]), 1-dodecyl-3-methylimidazolium chloride ([C12MIM][Cl]), and 1-decyl-methylimidazolium chloride ([C10MIM][Cl]) on the structure of bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. Concerning the fluorescence measurements, we observed a blue shift and a fluorescence quenching as the IL concentration increased in the solution. Such behavior was observed for all three studied imidazolium-based ILs, being larger as the number of methylene groups in the alkyl chain increased. UV-vis absorbance measurements indicate that even at relatively small IL/protein ratios, like 1:1 or 1:2, ([C14MIM][Cl]) is able to change, at least partially, the sample turbidity. SAXS results agree with the spectroscopic techniques and suggest that the proteins underwent partial unfolding, evidenced by an increase in the radius of gyration (Rg) of the scattering particle. In the absence and presence of ([C14MIM][Cl]) = 3 mM BSA Rg increases from 29.1 to 45.1 Å, respectively. Together, these results indicate that the interaction of BSA with ILs is divided into three stages: the first stage is characterized by the protein in its native form. It takes place for protein/IL ≤ 1:2, and the interaction is predominantly due to the electrostatic forces provided by the negative charges on the surface of BSA and the cationic polar head of the ILs. In the second stage, higher IL concentrations induce the unfolding of the protein, most likely inducing the unfolding of domains I and III, in such a way that the protein’s secondary structure is kept almost unaltered. In the last stage, IL micelles start to form, and therefore, the interaction with protein reaches a saturation point and free micelles may be formed. We believe that this work provides new information about the interaction of ILs with BSA. 
  •  
2.
  • Nicolas, Aude, et al. (författare)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • Ingår i: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
3.
  • Silva, Jose Luis, et al. (författare)
  • X‑ray Photoelectron Fingerprints of High-Valence Ruthenium−Oxo Complexes along the Oxidation Reaction Pathway in an Aqueous Environment
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:24, s. 7636-7643
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in operando-synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [RuII(bpy)2(py)-(OH2)]2+, in an aqueous environment. There is a unique fingerprint of the extremely important higher-valence ruthenium−oxo species in the XPS spectra along the oxidation reaction pathway. Furthermore, a sequential method combining quantum mechanics and molecular mechanics is used to illuminate the underlying physical chemistry of such systems. This study provides the basis for the future development of in-operando XPS techniques for water oxidation reactions.
  •  
4.
  • Brandao, Idney, et al. (författare)
  • Density functional theory investigation of the second hyperpolarizability of the phenol blue in solution
  • 2022
  • Ingår i: Chemical Physics Letters. - : Elsevier. - 0009-2614 .- 1873-4448. ; 796
  • Tidskriftsartikel (refereegranskat)abstract
    • The second electronic hyperpolarizability (gamma) of the phenol blue (PB) in several solvents in a wide range of dielectric constants is investigated using the Density Functional Theory. The performance of hybrid functionals, with and without long-range correction, is addressed by comparison to Hartree-Fock calculations. Among the employed exchange-correlation functionals, the LC-BLYP functional is suitable for describing the behavior of gamma in solution. LC-BLYP results indicate a clear relationship between the second hyperpolarizability and the bond length alternation (BLA) coordinate for PB in solution, in agreement with experiment.
  •  
5.
  • Chen, Qiaonan, 1992, et al. (författare)
  • Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
  • 2022
  • Ingår i: Nano-Micro Letters. - : Springer Science and Business Media LLC. - 2311-6706 .- 2150-5551. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Highlights: A series of non-conjugated acceptor polymers with flexible conjugation-break spacers (FCBSs) of different lengths were synthesized.The effect of FCBSs length on solubility of the acceptor polymers, and their photovoltaic and mechanical properties in all-polymer solar cells were explored.This work provides useful guidelines for the design of semiconducting polymers by introducing FCBS with proper length, which can giantly improved properties that are not possible to be achieved by the state-of-the-art fully conjugated polymers. Abstract: All-polymer solar cells (all-PSCs) possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing. Introducing flexible conjugation-break spacers (FCBSs) into backbones of polymer donor (PD) or polymer acceptor (PA) has been demonstrated as an efficient approach to enhance both the photovoltaic (PV) and mechanical properties of the all-PSCs. However, length dependency of FCBS on certain all-PSC related properties has not been systematically explored. In this regard, we report a series of new non-conjugated PAs by incorporating FCBS with various lengths (2, 4, and 8 carbon atoms in thioalkyl segments). Unlike common studies on so-called side-chain engineering, where longer side chains would lead to better solubility of those resulting polymers, in this work, we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length (i.e., C2) in PA named PYTS-C2. Its all-PSC achieves a high efficiency of 11.37%, and excellent mechanical robustness with a crack onset strain of 12.39%, significantly superior to those of the other PAs. These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs, providing an effective strategy to fine-tune the structures of PAs for highly efficient and mechanically robust PSCs.[Figure not available: see fulltext.]
  •  
6.
  • Filate, Tadele Tamenu, 1994, et al. (författare)
  • Aqueous Processed All-Polymer Solar Cells with High Open-Circuit Voltage Based on Low-Cost Thiophene-Quinoxaline Polymers
  • 2024
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 16:10, s. 12886-12896
  • Tidskriftsartikel (refereegranskat)abstract
    • Eco-friendly solution processing and the low-cost synthesis of photoactive materials are important requirements for the commercialization of organic solar cells (OSCs). Although varieties of aqueous-soluble acceptors have been developed, the availability of aqueous-processable polymer donors remains quite limited. In particular, the generally shallow highest occupied molecular orbital (HOMO) energy levels of existing polymer donors limit further increases in the power conversion efficiency (PCE). Here, we design and synthesize two water/alcohol-processable polymer donors, poly[(thiophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-T)) and poly[(selenophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-Se)) with oligo(ethylene glycol) (OEG) side chains, having deep HOMO energy levels (∼−5.4 eV). The synthesis of the polymers is achieved in a few synthetic and purification steps at reduced cost. The theoretical calculations uncover that the dielectric environmental variations are responsible for the observed band gap lowering in OEG-based polymers compared to their alkylated counterparts. Notably, the aqueous-processed all-polymer solar cells (aq-APSCs) based on P(Qx8O-T) and poly[(N,N′-bis(3-(2-(2-(2-methoxyethoxy)-ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-methyl)propyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-(2,5-thiophene)] (P(NDIDEG-T)) active layer exhibit a PCE of 2.27% and high open-circuit voltage (VOC) approaching 0.8 V, which are among the highest values for aq-APSCs reported to date. This study provides important clues for the design of low-cost, aqueous-processable polymer donors and the fabrication of aqueous-processable OSCs with high VOC
  •  
7.
  • Franco, Leandro R., et al. (författare)
  • Elucidating the conformational change and electronic absorption spectrum of p-dimethylamino-cinnamaldehyde merocyanine across different solvent polarities
  • 2023
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 159:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a theoretical study on the structural and electronic properties of the p-dimethylamino-cinnamaldehyde (DMACA) merocyanine molecule in solvents of different polarities by combining the free energy gradient and the average solvent electrostatic configuration methods via an iterative procedure based on the sequential quantum mechanics/molecular mechanics hybrid methodology. Studying such a system in solution is a crucial step for understanding the solvent effects on its properties, which can have implications in fields such as optoelectronics and biophysics. We found that the DMACA molecule presents different geometries in nonpolar and polar solvents, changing from a polyene-like structure with a pyramidal dimethylamino group (in gas phase or nonpolar solvents) to a cyanine-like structure with a planar dimethylamino group in water due to the stabilizing effect of hydrogen bonds between DMACA and water. The molecular absorption spectrum showed a significant change, increasing solvent polarity with a large shift of the lower energy band, while the other two low lying bands did not shift significantly. The study accurately described the solvatochromic shift of the lowest-energy band and analyzed the structure of the excited states in terms of the one-electron transition density matrix, which showed that the dominant excited state (associated with the first lower energy band) is characterized by a local excitation on the benzene ring with charge transfer character to the carbon conjugated segment. 
  •  
8.
  • Franco, Leandro R., et al. (författare)
  • Simulations reveal that antimicrobial BP100 induces local membrane thinning, slows lipid dynamics and favors water penetration
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:8, s. 4573-4588
  • Tidskriftsartikel (refereegranskat)abstract
    • BP100, a short antimicrobial peptide, produces membrane perturbations that depend on lipid structure and charge, salts presence, and peptide/lipid molar ratios. As membrane perturbation mechanisms are not fully understood, the atomic scale nature of peptide/membrane interactions requires a close-up view analysis. Molecular Dynamics (MD) simulations are valuable tools for describing molecular interactions at the atomic level. Here, we use MD simulations to investigate alterations in membrane properties consequent to BP100 binding to zwitterionic and anionic model membranes. We focused on membrane property changes upon peptide binding, namely membrane thickness, order parameters, surface curvature, lipid lateral diffusion and membrane hydration. In agreement with experimental results, our simulations showed that, when buried into the membrane, BP100 causes a decrease in lipid lateral diffusion and lipid acyl-chain order parameters and sharp local membrane thinning. These effects were most pronounced on the closest lipids in direct contact with the membrane-bound peptide. In DPPG and anionic-aggregate-containing DPPC/DPPG membranes, peptide flip (rotation of its non-polar facet towards the membrane interior) induced marked negative membrane curvature and enhanced the water residence half-life time in the lipid hydrophobic core and transmembrane water transport in the direction of the peptide. These results further elucidate the consequences of the initial interaction of cationic alpha-helical antimicrobial peptides with membranes.
  •  
9.
  • Franco, Leandro R., et al. (författare)
  • Theoretical investigation of solvent and oxidation/deprotonation effects on the electronic structure of a mononuclear Ru-aqua-polypyridine complex in aqueous solution
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:36, s. 24475-24494
  • Tidskriftsartikel (refereegranskat)abstract
    • Mononuclear polypyridine ruthenium (Ru) complexes can catalyze various reactions, including water splitting, and can also serve as photosensitizers in solar cells. Despite recent progress in their synthesis, accurately modeling their physicochemical properties, particularly in solution, remains challenging. Herein, we conduct a theoretical investigation of the structural and electronic properties of a mononuclear Ru-aqua polypyridine complex in aqueous solution, considering five of its possible oxidation/protonation states species: [RuII(H2O)(py)(bpy)2]2+, [RuII(OH)(py)(bpy)2]+, [RuIII(H2O)(py)(bpy)2]3+, [RuIII(OH)(py)(bpy)2]2+ and [RuIV(O)(py)(bpy)2]2+, where py = pyridine and bpy = 2,2 & PRIME;-bipyridine. At first, we investigate the impact of proton-coupled and non-coupled electron transfer reactions on the geometry and electronic structure of the complexes in vacuum and in solution, using an implicit solvent model. Then, using a sequential multiscale approach that combines quantum mechanics and molecular mechanics (S-QM/MM), we examine the explicit solvent effects on the electronic excitations of the complexes, and compare them with the experimental results. The complexes were synthesized, and their absorption spectra measured in aqueous solution. To accurately describe the QM interactions between the metal center and the aqueous ligand in the MM simulations, we developed new force field parameters for the Ru atom. We analyze the solvent structure around the complexes and account for its explicit influence on the polarization and electronic excitations of the complexes. Notably, accounting for the explicit solvent polarization effects of the first solvation shells is essential to correctly describe the energy of the electronic transitions, and the explicit treatment of the hydrogen bonds at the QM level in the excitation calculations improves the accuracy of the description of the metal-to-ligand charge-transfer bands. Transition density matrix analysis is used to characterize all electronic transitions in the visible and ultraviolet ranges according to their charge-transfer (CT) character. This study elucidates the electronic structure of those ruthenium polypyridyl complexes in aqueous solution and underscores the importance of precisely describing solvent effects, which can be achieved employing the S-QM/MM method. Ru-aqua complex in water, showcasing Ru atom, coordinated water, and hydrogen bonds on left; UV-Vis spectrum and comparison to experiment on right. QM/MM approach emphasized.
  •  
10.
  • Franco, Leandro R., et al. (författare)
  • Unraveling the acid-base characterization and solvent effects on the structural and electronic properties of a bis-bidentate bridging ligand
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:17, s. 10222-10240
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the interactions and the solvent effects on the distribution of several species in equilibrium and how it can influence the 1H-NMR properties, spectroscopy (UV-vis absorption), and the acid–base equilibria can be especially challenging. This is the case of a bis-bidentate bridging ligand bis(2-pyridyl)-benzo-bis(imidazole), where the two pyridyl and four imidazolyl nitrogen atoms can be protonated in different ways, depending on the solvent, generating many isomeric/tautomeric species. Herein, we report a combined theoretical–experimental approach based on a sequential quantum mechanics/molecular mechanics procedure that was successfully applied to describe in detail the acid–base characterization and its effects on the electronic properties of such a molecule in solution. The calculated free-energies allowed the identification of the main species present in solution as a function of the solvent polarity, and its effects on the magnetic shielding of protons (1H-NMR chemical shifts), the UV-vis absorption spectra, and the acid–base equilibrium constants (pKas) in aqueous solution. Three acid–base equilibrium constants were experimentally/theoretically determined (pKa1 = 1.3/1.2, pKa2 = 2.1/2.2 and pKa5 = 10.1/11.3) involving mono-deprotonated and mono-protonated cis and trans species. Interestingly, other processes with pKa3 = 3.7 and pKa4 = 6.0 were also experimentally determined and assigned to the protonation and deprotonation of dimeric species. The dimerization of the most stable neutral species was investigated by Monte Carlo simulations and its electronic effects were considered for the elucidation of the UV-vis absorption bands, revealing transitions mainly with the charge-transfer characteristic and involving both the monomeric species and the dimeric species. The good matching of the theoretical and experimental results provides an atomistic insight into the solvent effects on the electronic properties of this bis-bidentate bridging ligand.
  •  
11.
  • Franco, Leandro R., et al. (författare)
  • Unraveling the Impact of Flexibility and Solvent Effects on the UV-Vis Absorption Spectrum of Subphthalocyanine in Liquid Chloroform within the Born-Oppenheimer Molecular Dynamics Approach
  • 2023
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 127:38, s. 7937-7942
  • Tidskriftsartikel (refereegranskat)abstract
    • A study based on Born-Oppenheimer molecular dynamics (BOMD) of the subphthalocyanine (SubPc) with a chloride attached to the central boron atom was carried out. The BOMD simulation is used to access the dynamic evolution of the SubPc in liquid chloroform, and the electronic absorption spectrum is calculated using the Time-Dependent Density Functional Theory (TDDFT) considering explicit solvent models. We show that the conformational changes and solvent effects produce a red shift of the Q-band, where the largest contribution is due to the geometry changes of the symmetric structure of SubPc. A large splitting (0.2 eV) of the first electronic transition is also described, and it originates as a shoulder in the Q-band, which according to previous experimental studies is attributed to a vibronic origin. The red shift is obtained in agreement with experiment within less than 0.1 eV. The splitting is a consequence of the symmetry breaking in the SubPc central ring structure occurring during the molecular dynamics, with a significant contribution to the large red shift and the broadening of the spectrum.
  •  
12.
  • Franco, Leandro R., et al. (författare)
  • Unveiling the impact of exchange-correlation functionals on the description of key electronic properties of non-fullerene acceptors in organic photovoltaics
  • 2023
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 159:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene electron acceptors have emerged as promising alternatives to traditional electron-acceptors in the active layers of organic photovoltaics. This is due to their tunable energy levels, optical response in the visible light spectrum, high electron mobility, and photochemical stability. In this study, the electronic properties of two representative non-fullerene acceptors, ITIC and Y5, have been calculated within the framework of density functional theory using a range of hybrid and non-hybrid density functionals. Screened range-separated hybrid (SRSH) approaches were also tested. The results are analyzed in light of the previously reported experimental outcomes. Specifically, we have calculated the oxidation and reduction potentials, fundamental and optical gaps, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and exciton binding energies. Additionally, we have investigated the effects of the medium dielectric constant on these properties employing a universal implicit solvent model. It was found that hybrid functionals generally perform poorly in predicting oxidation potentials, while non-hybrid functionals tend to overestimate reduction potentials. The inclusion of a large Hartree-Fock contribution to the global or long range was identified as the source of inaccuracy for many hybrid functionals in predicting both redox potentials and the fundamental and optical gaps. Corroborating with the available literature, ∼50% of all tested functionals predicted very small exciton binding energies, within the range of ±0.1 eV, that become even smaller by increasing the dielectric constant of the material. Finally, the OHSE2PBE and tHCTHhyb functionals and the optimal tuning SRSH approach emerged as the best-performing methods, with good accuracy in the description of the electronic properties of interest. 
  •  
13.
  • Khan, Ziyauddin, et al. (författare)
  • Mass Transport in “Water-in-Polymer Salt” Electrolytes
  • 2023
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 35, s. 6382-6395
  • Tidskriftsartikel (refereegranskat)abstract
    • “Water-in-polymer salt” electrolytes (WiPSEs) based on potassium polyacrylate (PAAK) belong to a new family of “water-in-salt” electrolytes that is envisioned as a potential solution for large-scale supercapacitors to balance the electric grid at short time scales. The WiPSEs display a broad electrochemical stability window up to 3 V, yet they are nonflammable and provide high ionic conductivity (100 mS/cm) as required in high-power devices. However, the transport of matter in PAAK-based WiPSEs has not been studied. In this work, we have extensively characterized PAAK by spectroscopic methods such as Raman spectroscopy and NMR diffusometry to determine the state of water and elucidate the mechanism of ionic transport as well as its interplay with water and polymer chain dynamics, which reveals that a significant proportion of the transport in WiPSEs is attributed to hydrated cations. The results are further supported by molecular dynamics (MD) simulations. Finally, the potential of WiPSEs based on PAAK is demonstrated in an activated carbon-based supercapacitor operating up to 2 V with reasonable self-discharge. This proof of concept shows promise for low-cost and large-scale supercapacitors.
  •  
14.
  • Kumar, Divyaratan, et al. (författare)
  • Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery
  • 2024
  • Ingår i: Energy and Environmental Materials. - : WILEY. - 2575-0356 .- 2575-0348. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g−1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g−1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs.
  •  
15.
  • Kumar, Divyaratan, et al. (författare)
  • Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery
  • 2024
  • Ingår i: Energy & Environmental Materials. - : John Wiley & Sons. - 2575-0356 .- 2575-0348.
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g-1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g-1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs. A dendrite-free and long-life cycle Zn-lignin battery was demonstrated using water-in-polymer salt electrolyte. 
  •  
16.
  • Ramos, Tárcius N., et al. (författare)
  • Calculation of the one- and two-photon absorption spectra of water-soluble stilbene derivatives using a multiscale QM/MM approach
  • 2023
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 159:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculated the one- (OPA) and two-photon absorption (TPA) spectra of two large water-soluble stilbene derivatives presenting TPA cross sections of about 400 GM. However, the reported experimental TPA spectra present a spectral gap region, and a theoretical study of these promising molecules seems now timely and relevant. These molecules are composed of 200 or more atoms, becoming a challenge to obtain the TPA spectra even using density functional theory at the time-dependent quadratic response formalism. Thus, both OPA and TPA were also calculated using the INDO-S semi-empirical method. We used explicit solvent molecules using the sequential-quantum mechanics/molecular mechanics to include the solvent effects. Our results show that different transitions are participating in the OPA and TPA processes and that exchange-correlation functionals, including larger Hartree-Fock contributions, provide a better description of the OPA spectra; however, the opposite trend is observed on the TPA spectra. Alternatively, INDO-S/CISD, including contributions from single and double excitations, systematically describes both OPA and TPA bands with similar shifts and better reproduces the relative intensities of the two TPA bands compared to the experimental ones. The OPA spectra are characterized by a Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) excitation, while the low-energy TPA band is ascribed to a single transition encompassing the (HOMO-1)-LUMO and HOMO-(LUMO+1) excitations and the high-energy one is a combination of several transitions. Thus, although more studies are required to better assess the capability of the INDO-S/CISD method in describing the TPA spectra of large molecules, our results corroborate that it is a promising alternative. 
  •  
17.
  • Valverde, Clodoaldo, et al. (författare)
  • Theoretical investigation on the linear and nonlinear optical properties of DAPSH crystal
  • 2023
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The linear polarizability, first and second hyperpolarizabilities of the asymmetric unit of DAPSH crystal are studied and compared with available experimental results. The polarization effects are included using an iterative polarization procedure, which ensures the convergence of the dipole moment of DAPSH embedded within a polarization field generated by the surrounding asymmetric units whose atomic sites are considered as point charges. We estimate macroscopic susceptibilities from the results of the polarized asymmetric units in the unit cell, considering the significant contribution of the electrostatic interactions in crystal packing. The results show that the influence of the polarization effects leads to a marked decrease of the first hyperpolarizability, compared with the respective isolated counterpart, which improves the concordance with the experiment. There is a minor influence of polarization effects on the second hyperpolarizability but our estimated result for the third-order susceptibility, related to the NLO process of the intensity dependent refractive index, is significant as compared with the results for other organic crystals, such as chalcone-derivatives. In addition, supermolecule calculations are conducted for explicit dimers in presence of the electrostatic embedding to illustrate the role played by the electrostatic interactions in the hyperpolarizabilities of the DAPSH crystal. 
  •  
18.
  • Wu, Jingnan, 1994, et al. (författare)
  • On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 %
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773.
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular & pi;-& pi; interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (18)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Martinelli, Anna, 19 ... (3)
Marchiori, Cleber (3)
Khan, Ziyauddin (3)
Gladisch, Johannes (2)
Gueskine, Viktor (2)
Unger, Isaak (1)
visa fler...
Mammo, W. (1)
Svendsen, Clive N. (1)
Crispin, Xavier (1)
Andersen, Peter M. (1)
Al-Chalabi, Ammar (1)
Shatunov, Aleksey (1)
D'Alfonso, Sandra (1)
Abhyankar, Avinash (1)
Björneholm, Olle (1)
Saak, Clara-Magdalen ... (1)
Marchiori, Cleber F. ... (1)
Araujo, Carlos Moyse ... (1)
Cooper-Knock, Johnat ... (1)
Fogh, Isabella (1)
van Damme, Philip (1)
Corcia, Philippe (1)
Hardiman, Orla (1)
Silani, Vincenzo (1)
Ticozzi, Nicola (1)
Veldink, Jan H. (1)
van den Berg, Leonar ... (1)
de Carvalho, Mamede (1)
Weber, Markus (1)
Shaw, Christopher E. (1)
Shaw, Pamela J. (1)
Morrison, Karen E. (1)
Landers, John E. (1)
Glass, Jonathan D. (1)
Van Eyk, Jennifer E. (1)
Arepalli, Sampath (1)
Taroni, Franco (1)
van Blitterswijk, Ma ... (1)
Lumbroso, Serge (1)
Camu, William (1)
van Rheenen, Wouter (1)
Talbot, Kevin (1)
Keagle, Pamela (1)
Ratti, Antonia (1)
Mouzat, Kevin (1)
Gitler, Aaron D. (1)
Rouleau, Guy A. (1)
Rademakers, Rosa (1)
Chio, Adriano (1)
Laaksovirta, Hannu (1)
visa färre...
Lärosäte
Karlstads universitet (16)
Uppsala universitet (6)
Chalmers tekniska högskola (6)
Linköpings universitet (4)
Umeå universitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Teknik (5)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy