SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Franzmeier Nicolai 1989) "

Sökning: WFRF:(Franzmeier Nicolai 1989)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biechele, Gloria, et al. (författare)
  • Associations between sex, body mass index and the individual microglial response in Alzheimer's disease
  • 2024
  • Ingår i: JOURNAL OF NEUROINFLAMMATION. - 1742-2094. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectives18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between beta-amyloid-accumulation and microglial activation in AD.Methods49 patients with AD (29 females, all A beta-positive) and 15 A beta-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and beta-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional A beta-PET on TSPO-PET was used to determine the A beta-plaque-dependent microglial response (slope) and the A beta-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI).ResultsIn AD, females showed higher mean cortical TSPO-PET z-scores (0.91 +/- 0.49; males 0.30 +/- 0.75; p = 0.002), while A beta-PET z-scores were similar. The A beta-plaque-independent microglial response was stronger in females with AD (+ 0.37 +/- 0.38; males with AD - 0.33 +/- 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the A beta-plaque-dependent microglial response was not different between sexes. The A beta-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the A beta-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005).ConclusionWhile microglia response to fibrillar A beta is similar between sexes, women with AD show a stronger A beta-plaque-independent microglia response. This sex difference in A beta-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the A beta-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.
  •  
2.
  • Biel, D., et al. (författare)
  • sTREM2 is associated with amyloid-related p-tau increases and glucose hypermetabolism in Alzheimer's disease
  • 2023
  • Ingår i: Embo Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglial activation occurs early in Alzheimer's disease (AD) and previous studies reported both detrimental and protective effects of microglia on AD progression. Here, we used CSF sTREM2 to investigate disease stage-dependent drivers of microglial activation and to determine downstream consequences on AD progression. We included 402 patients with measures of earliest beta-amyloid (CSF A beta(1-42)) and late-stage fibrillary A beta pathology (amyloid-PET centiloid), as well as sTREM2, p-tau(181), and FDG-PET. To determine disease stage, we stratified participants into early A beta-accumulators (A beta CSF+/PET-; n = 70) or late A beta-accumulators (A beta CSF+/PET+; n = 201) plus 131 controls. In early A beta-accumulators, higher centiloid was associated with cross-sectional/longitudinal sTREM2 and p-tau(181) increases. Further, higher sTREM2 mediated the association between centiloid and cross-sectional/longitudinal p-tau(181) increases and higher sTREM2 was associated with FDG-PET hypermetabolism. In late A beta-accumulators, we found no association between centiloid and sTREM2 but a cross-sectional association between higher sTREM2, higher p-tau(181) and glucose hypometabolism. Our findings suggest that a TREM2-related microglial response follows earliest A beta fibrillization, manifests in inflammatory glucose hypermetabolism and may facilitate subsequent p-tau(181) increases in earliest AD.
  •  
3.
  • Coenen, Mirthe, et al. (författare)
  • Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts
  • 2023
  • Ingår i: NeuroImage. Clinical. - 2213-1582. ; 40
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as "unusual", but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. METHODS: Individual participant data (N=3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. RESULTS: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. DISCUSSION: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered.
  •  
4.
  • Finze, Anika, et al. (författare)
  • Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies
  • 2023
  • Ingår i: MOLECULAR PSYCHIATRY. - 1359-4184 .- 1476-5578. ; 28:10, s. 4438-4450
  • Tidskriftsartikel (refereegranskat)abstract
    • & beta;-amyloid (A & beta;) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, A & beta;-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of A & beta; (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional A & beta; (AD: & beta;(T) = 0.412 & PLUSMN; 0.196 vs. & beta;(A) = 0.142 & PLUSMN; 0.123, p < 0.001; AD-CBS: & beta;(T) = 0.385 & PLUSMN; 0.176 vs. & beta;(A) = 0.131 & PLUSMN; 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (& beta;(T) = 0.418 & PLUSMN; 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and A & beta; related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.
  •  
5.
  • Franzmeier, Nicolai, 1989, et al. (författare)
  • Elevated CSF GAP-43 is associated with accelerated tau accumulation and spread in Alzheimer's disease.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer's disease, amyloid-beta (Aβ) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aβ induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aβ-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aβ-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aβ and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aβ-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.
  •  
6.
  • Levin, Fedor, et al. (författare)
  • Longitudinal trajectories of cognitive reserve in hypometabolic subtypes of Alzheimer's disease
  • 2024
  • Ingår i: Neurobiology of Aging. - 0197-4580 .- 1558-1497. ; 135, s. 26-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have demonstrated resilience to AD-related neuropathology in a form of cognitive reserve (CR). In this study we investigated a relationship between CR and hypometabolic subtypes of AD, specifically the typical and the limbic-predominant subtypes. We analyzed data from 59 Aβ-positive cognitively normal (CN), 221 prodromal Alzheimer's disease (AD) and 174 AD dementia participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) from ADNI and ADNIGO/2 phases. For replication, we analyzed data from 5 Aβ-positive CN, 89 prodromal AD and 43 AD dementia participants from ADNI3. CR was estimated as standardized residuals in a model predicting cognition from temporoparietal grey matter volumes and covariates. Higher CR estimates predicted slower cognitive decline. Typical and limbic-predominant hypometabolic subtypes demonstrated similar baseline CR, but the results suggested a faster decline of CR in the typical subtype. These findings support the relationship between subtypes and CR, specifically longitudinal trajectories of CR. Results also underline the importance of longitudinal analyses in research on CR.
  •  
7.
  • Malpetti, Maura, et al. (författare)
  • Neuroinflammation Parallels 18F-PI-2620 Positron Emission Tomography Patterns in Primary 4-Repeat Tauopathies
  • 2024
  • Ingår i: MOVEMENT DISORDERS. - 0885-3185 .- 1531-8257.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Preclinical, postmortem, and positron emission tomography (PET) imaging studies have pointed to neuroinflammation as a key pathophysiological hallmark in primary 4-repeat (4R) tauopathies and its role in accelerating disease progression. Objective We tested whether microglial activation (1) progresses in similar spatial patterns as the primary pathology tau spreads across interconnected brain regions, and (2) whether the degree of microglial activation parallels tau pathology spreading. Methods We examined in vivo associations between tau aggregation and microglial activation in 31 patients with clinically diagnosed 4R tauopathies, using 18F-PI-2620 PET and 18F-GE180 (translocator protein [TSPO]) PET. We determined tau epicenters, defined as subcortical brain regions with highest tau PET signal, and assessed the connectivity of tau epicenters to cortical regions of interest using a 3-T resting-state functional magnetic resonance imaging template derived from age-matched healthy elderly controls. Results In 4R tauopathy patients, we found that higher regional tau PET covaries with elevated TSPO-PET across brain regions that are functionally connected to each other (beta = 0.414, P < 0.001). Microglial activation follows similar distribution patterns as tau and distributes primarily across brain regions strongly connected to patient-specific tau epicenters (beta = -0.594, P < 0.001). In these regions, microglial activation spatially parallels tau distribution detectable with 18F-PI-2620 PET. Conclusions Our findings indicate that the spatial expansion of microglial activation parallels tau distribution across brain regions that are functionally connected to each other, suggesting that tau and inflammation are closely interrelated in patients with 4R tauopathies. The combination of in vivo tau and inflammatory biomarkers could therefore support the development of immunomodulatory strategies for disease-modifying treatments in these conditions.
  •  
8.
  • Quattrone, Andrea, et al. (författare)
  • Magnetic Resonance Imaging Measures to Track Atrophy Progression in Progressive Supranuclear Palsy in Clinical Trials
  • 2024
  • Ingår i: MOVEMENT DISORDERS. - 0885-3185 .- 1531-8257.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Several magnetic resonance imaging (MRI) measures have been suggested as progression biomarkers in progressive supranuclear palsy (PSP), and some PSP staging systems have been recently proposed. Objective Comparing structural MRI measures and staging systems in tracking atrophy progression in PSP and estimating the sample size to use them as endpoints in clinical trials. MethodsProgressive supranuclear palsy-Richardson's syndrome (PSP-RS) patients with one-year-follow-up longitudinal brain MRI were selected from the placebo arms of international trials (NCT03068468, NCT01110720, NCT01049399) and the DescribePSP cohort. The discovery cohort included patients from the NCT03068468 trial; the validation cohort included patients from other sources. Multisite age-matched healthy controls (HC) were included for comparison. Several MRI measures were compared: automated atlas-based volumetry (44 regions), automated planimetric measures of brainstem regions, and four previously described staging systems, applied to volumetric data. Results Of 508 participants, 226 PSP patients including discovery (n = 121) and validation (n = 105) cohorts, and 251 HC were included. In PSP patients, the annualized percentage change of brainstem and midbrain volume, and a combined index including midbrain, frontal lobe, and third ventricle volume change, were the progression biomarkers with the highest effect size in both cohorts (discovery: >1.6; validation cohort: >1.3). These measures required the lowest sample sizes (n < 100) to detect 30% atrophy progression, compared with other volumetric/planimetric measures and staging systems. Conclusions This evidence may inform the selection of imaging endpoints to assess the treatment efficacy in reducing brain atrophy rate in PSP clinical trials, with automated atlas-based volumetry requiring smaller sample size than staging systems and planimetry to observe significant treatment effects.
  •  
9.
  • Roemer, Sebastian N., et al. (författare)
  • Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies
  • 2024
  • Ingår i: BRAIN. - 0006-8950 .- 1460-2156. ; 147:7, s. 2428-2439
  • Tidskriftsartikel (refereegranskat)abstract
    • Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies.We included 51 A beta-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres.As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion.Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity. Four-repeat tauopathies are rapidly progressive neurodegenerative diseases with mixed subcortical and cortical symptoms. Using advanced neuroimaging methods, Roemer et al. show that subcortical tau accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions.
  •  
10.
  • Steward, Anna, et al. (författare)
  • ApoE4 and Connectivity-Mediated Spreading of Tau Pathology at Lower Amyloid Levels
  • 2023
  • Ingår i: JAMA Neurology. - 2168-6149 .- 2168-6157. ; 80:12, s. 1295-1306
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE For the Alzheimer disease (AD) therapies to effectively attenuate clinical progression, it may be critical to intervene before the onset of amyloid-associated tau spreading, which drives neurodegeneration and cognitive decline. Time points at which amyloid-associated tau spreading accelerates may depend on individual risk factors, such as apolipoprotein E ε4 (ApoE4) carriership, which is linked to faster disease progression; however, the association of ApoE4 with amyloid-related tau spreading is unclear. OBJECTIVE To assess if ApoE4 carriers show accelerated amyloid-related tau spreading and propose amyloid positron emission tomography (PET) thresholds at which tau spreading accelerates in ApoE4 carriers vs noncarriers. DESIGN, SETTING, AND PARTICIPANTS This cohort study including combined ApoE genotyping, amyloid PET, and longitudinal tau PET from 2 independent samples: the Alzheimer’s Disease Neuroimaging Initiative (ADNI; n = 237; collected from April 2015 to August 2022) and Avid-A05 (n = 130; collected from December 2013 to July 2017) with a mean (SD) tau PET follow-up time of 1.9 (0.96) years in ADNI and 1.4 (0.23) years in Avid-A05. ADNI is an observational multicenter Alzheimer disease neuroimaging initiative and Avid-A05 an observational clinical trial. Participants classified as cognitively normal (152 in ADNI and 77 in Avid-A05) or mildly cognitively impaired (107 in ADNI and 53 in Avid-A05) were selected based on ApoE genotyping, amyloid-PET, and longitudinal tau PET data availability. Participants with ApoE ε2/ε4 genotype or classified as having dementia were excluded. Resting-state functional magnetic resonance imaging connectivity templates were based on 42 healthy participants in ADNI. MAIN OUTCOMES AND MEASURES Mediation of amyloid PET on the association between ApoE4 status and subsequent tau PET increase through Braak stage regions and interaction between ApoE4 status and amyloid PET with annual tau PET increase through Braak stage regions and connectivity-based spreading stages (tau epicenter connectivity ranked regions). RESULTS The mean (SD) age was 73.9 (7.35) years among the 237 ADNI participants and 70.2 (9.7) years among the 130 Avid-A05 participants. A total of 107 individuals in ADNI (45.1%) and 45 in Avid-A05 (34.6%) were ApoE4 carriers. Across both samples, we found that higher amyloid PET–mediated ApoE4-related tau PET increased globally (ADNI b, 0.15; 95% CI, 0.05-0.28; P = .001 and Avid-A05 b, 0.33; 95% CI, 0.14-0.54; P < .001) and in earlier Braak regions. Further, we found a significant association between ApoE4 status by amyloid PET interaction and annual tau PET increases consistently through early Braak- and connectivity-based stages where amyloid-related tau accumulation was accelerated in ApoE4carriers vs noncarriers at lower centiloid thresholds, corrected for age and sex. CONCLUSIONS AND RELEVANCE The findings in this study indicate that amyloid-related tau accumulation was accelerated in ApoE4 carriers at lower amyloid levels, suggesting that ApoE4 may facilitate earlier amyloid-driven tau spreading across connected brain regions. Possible therapeutic implications might be further investigated to determine when best to prevent tau spreading and thus cognitive decline depending on ApoE4 status.
  •  
11.
  • Vogel, Jacob W., et al. (författare)
  • Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight
  • 2023
  • Ingår i: Nature Reviews Neuroscience. - 1471-003X .- 1471-0048. ; 24:10, s. 620-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine. Neurodegenerative diseases show idiosyncratic spatial patterns of progressive protein malformations in the brain. In this Perspective, Vogel et al. discuss the role of inter-regional connectivity in constraining and modulating the spread of pathological proteins and provide a framework for patient-tailored prognostics.
  •  
12.
  • Zheng, L. K., et al. (författare)
  • Combined Connectomics, MAPT Gene Expression, and Amyloid Deposition to Explain Regional Tau Deposition in Alzheimer Disease
  • 2024
  • Ingår i: Annals of Neurology. - 0364-5134. ; 95:2, s. 274-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum.Methods: We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, F-18-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants.Results: Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R-2 range across studies = 0.118-0.148, 0.156-0.196, and 0.251-0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively).Interpretation: Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy