SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frasnelli J) "

Sökning: WFRF:(Frasnelli J)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gerkin, RC, et al. (författare)
  • The best COVID-19 predictor is recent smell loss: a cross-sectional study
  • 2020
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • BackgroundCOVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.MethodsThis preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.ResultsBoth C19+ and C19-groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ∼50% of participants and was best predicted by time since illness onset.ConclusionsAs smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<OR<10), which can be deployed when viral lab tests are impractical or unavailable.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Berube, S, et al. (författare)
  • Olfactory Training Impacts Olfactory Dysfunction Induced by COVID-19: A Pilot Study
  • 2023
  • Ingår i: ORL. - : S. Karger AG. - 1423-0275 .- 0301-1569. ; 85:2, s. 57-66
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Introduction:</i></b> Olfactory dysfunction is one of the main symptoms of COVID-19 and may last beyond resolution of the infection. The most promising intervention for post-viral olfactory dysfunction is olfactory training (OT), which involves exposing the olfactory system to a range of odors daily. This approach is thought of promoting the regeneration of olfactory receptor cells, but its effectiveness in patients with post-COVID-19 olfactory dysfunction has yet to be confirmed. <b><i>Methods:</i></b> This double-blind randomized pilot study compared the effectiveness of OT versus placebo in the treatment of post-COVID-19 olfactory dysfunction. Twenty-five participants were recruited in each group. OT protocol consisted of sniffing 4 scents (rose, orange, clove, and eucalyptus) for 5 min twice daily for 12 weeks. Olfactory function was assessed before and after the training using (1) a validated odor identification test (UPSIT-40) and (2) a 10-point visual analog scale; we further assessed the presence of (3) parosmia. <b><i>Results:</i></b> While we did not observe any effect of OT on olfactory test scores, we observed a significant improvement of subjective olfactory function in the intervention group, while no such effect was observed in the placebo group. Finally, the frequency of parosmia was significantly lower in the intervention group. <b><i>Conclusions:</i></b> This study highlights an increase in subjective but not objective olfactory function when performing OT for 12 weeks. Further, parosmia seems to be positively affected by OT. These results may serve as a starting point for larger scale studies to assess the efficacy of OT for treatment of post-COVID-19 olfactory dysfunction.
  •  
7.
  •  
8.
  • Frasnelli, J, et al. (författare)
  • Neuroanatomical correlates of olfactory performance
  • 2010
  • Ingår i: Experimental brain research. - : Springer Science and Business Media LLC. - 1432-1106 .- 0014-4819. ; 201:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Filiou, RP, et al. (författare)
  • Perception of trigeminal mixtures
  • 2015
  • Ingår i: Chemical senses. - : Oxford University Press (OUP). - 1464-3553 .- 0379-864X. ; 40:1, s. 61-69
  • Tidskriftsartikel (refereegranskat)
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Manzini, I., et al. (författare)
  • Wie wir riechen und was es für uns bedeutet
  • 2014
  • Ingår i: Hno. - : Springer Science and Business Media LLC. - 0017-6192 .- 1433-0458. ; 62:12, s. 846-852
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of the sense of smell lie in the perception of environmental molecules and go back to unicellular organisms such as bacteria. Odors transmit a multitude of information about the chemical composition of our environment. The sense of smell helps people and animals with orientation in space, warns of potential threats, influences the choice of sexual partners, regulates food intake and influences feelings and social behavior in general. The perception of odors begins in sensory neurons residing in the olfactory epithelium that express G protein-coupled receptors, the so-called olfactory receptors. The binding of odor molecules to olfactory receptors initiates a signal transduction cascade that converts olfactory stimuli into electrical signals. These signals are then transmitted to the olfactory bulb, the first relay center in the olfactory pathway, via the axons of the sensory neurons. The olfactory information is processed in the bulb and then transferred to higher olfactory centers via axons of mitral cells, the bulbar projection neurons. This review describes the mechanisms involved in peripheral detection of odorants, outlines the further processing of olfactory information in higher olfactory centers and finally gives an overview of the overall significance of the ability to smell.
  •  
23.
  • Parma, Valentina, et al. (författare)
  • More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis
  • 2020
  • Ingår i: Chemical Senses. - : Oxford University Press (OUP). - 0379-864X .- 1464-3553. ; 45:7, s. 609-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19–79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (−79.7 ± 28.7, mean ± standard deviation), taste (−69.0 ± 32.6), and chemesthetic (−37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
  •  
24.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy