SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frei Esther R.) "

Sökning: WFRF:(Frei Esther R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elphinstone, Cassandra, et al. (författare)
  • Multiple Pleistocene refugia for Arctic Bell-Heather revealed with genomic analyses of modern and historic plants
  • 2024
  • Ingår i: Journal of Biogeography. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Arctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high-resolution genomic data from present-day and Little-Ice-Age populations of Arctic Bell-Heather to re-evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia. Location: Circumpolar Arctic and Coastal British Columbia (BC) alpine. Taxon: Cassiope tetragona L., subspecies saximontana and tetragona, outgroup C. mertensiana (Ericaceae). Methods: We built genotyping-by-sequencing (GBS) libraries using Cassiope tetragona tissue from 36 Arctic locations, including two ~250- to 500-year-old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics. Results: Population structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspecies saximontana (5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present-day than historic plants on Ellesmere Island. Conclusions: Population and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re-analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia.
  •  
2.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
3.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
4.
  • Prevéy, Janet S., et al. (författare)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
5.
  • Watson, Hunna J., et al. (författare)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • Ingår i: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
6.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Björk, Robert G., 19 ... (5)
Myers-Smith, Isla H. (5)
Alatalo, Juha M. (4)
Lévesque, Esther (4)
Hollister, Robert D. (4)
Rixen, Christian (4)
visa fler...
Thomas, Haydn J.D. (4)
Wipf, Sonja (4)
Carbognani, Michele (4)
Petraglia, Alessandr ... (4)
Molau, Ulf, 1951 (3)
Oberbauer, Steven F. (3)
Björkman, Anne, 1981 (3)
Elberling, Bo (3)
Björkman, Mats P., 1 ... (3)
Wilmking, Martin (3)
Milbau, Ann (3)
Prevéy, Janet S. (3)
Tomaselli, Marcello (3)
Luoto, Miska (2)
Cornelissen, J. Hans ... (2)
Forbes, Bruce C. (2)
Grogan, Paul (2)
Schmidt, Niels Marti ... (2)
Michelsen, Anders (2)
Little, Chelsea J. (2)
Grau, Oriol (2)
Olofsson, Johan (2)
Speed, James D. M. (2)
Nabe-Nielsen, Jacob (2)
Soudzilovskaia, Nade ... (2)
Te Beest, Mariska (2)
Boike, Julia (2)
Buchwal, Agata (2)
Hallinger, Martin (2)
Heijmans, Monique M. ... (2)
Hofgaard, Annika (2)
Normand, Signe (2)
Street, Lorna E. (2)
Iversen, Colleen M. (2)
Ninot, Josep M. (2)
Elmendorf, Sarah C. (2)
Henry, Gregory H.R. (2)
Blok, Daan (2)
Hermanutz, Luise (2)
Spasojevic, Marko J. (2)
Vowles, Tage (2)
Anadon-Rosell, Alba (2)
Angers-Blondin, Sand ... (2)
Berner, Logan (2)
visa färre...
Lärosäte
Göteborgs universitet (6)
Umeå universitet (3)
Sveriges Lantbruksuniversitet (3)
Lunds universitet (2)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy