SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Zhongjie) "

Sökning: WFRF:(Fu Zhongjie)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fu, Zhongjie, et al. (författare)
  • FGF21 via mitochondrial lipid oxidation promotes physiological vascularization in a mouse model of Phase I ROP
  • 2023
  • Ingår i: Angiogenesis. - : Springer Science and Business Media LLC. - 0969-6970 .- 1573-7209. ; 26:3, s. 409-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperglycemia in early postnatal life of preterm infants with incompletely vascularized retinas is associated with increased risk of potentially blinding neovascular retinopathy of prematurity (ROP). Neovascular ROP (Phase II ROP) is a compensatory but ultimately pathological response to the suppression of physiological postnatal retinal vascular development (Phase I ROP). Hyperglycemia in neonatal mice which suppresses physiological retinal vascular growth is associated with decreased expression of systemic and retinal fibroblast growth factor 21 (FGF21). FGF21 administration promoted and FGF21 deficiency suppressed the physiological retinal vessel growth. FGF21 increased serum adiponectin (APN) levels and loss of APN abolished FGF21 promotion of physiological retinal vascular development. Blocking mitochondrial fatty acid oxidation also abolished FGF21 protection against delayed physiological retinal vessel growth. Clinically, preterm infants developing severe neovascular ROP (versus non-severe ROP) had a lower total lipid intake with more parenteral and less enteral during the first 4weeks of life. Our data suggest that increasing FGF21 levels in the presence of adequate enteral lipids may help prevent Phase I retinopathy (and therefore prevent neovascular disease).
  •  
2.
  • Fu, Zhongjie, et al. (författare)
  • Photoreceptor glucose metabolism determines normal retinal vascular growth
  • 2018
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 10:1, s. 76-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The neural cells and factors determining normal vascular growth are not well defined even though vision-threatening neovessel growth, a major cause of blindness in retinopathy of prematurity (ROP) (and diabetic retinopathy), is driven by delayed normal vascular growth. We here examined whether hyperglycemia and low adiponectin (APN) levels delayed normal retinal vascularization, driven primarily by dysregulated photoreceptor metabolism. In premature infants, low APN levels correlated with hyperglycemia and delayed retinal vascular formation. Experimentally in a neonatal mouse model of postnatal hyperglycemia modeling early ROP, hyperglycemia caused photoreceptor dysfunction and delayed neurovascular maturation associated with changes in the APN pathway; recombinant mouse APN or APN receptor agonist AdipoRon treatment normalized vascular growth. APN deficiency decreased retinal mitochondrial metabolic enzyme levels particularly in photoreceptors, suppressed retinal vascular development, and decreased photoreceptor platelet-derived growth factor (Pdgfb). APN pathway activation reversed these effects. Blockade of mitochondrial respiration abolished AdipoRon-induced Pdgfb increase in photoreceptors. Photoreceptor knockdown of Pdgfb delayed retinal vascular formation. Stimulation of the APN pathway might prevent hyperglycemia-associated retinal abnormalities and suppress phase I ROP in premature infants.
  •  
3.
  • Lee, Deokho, et al. (författare)
  • Therapeutic Effects of Anti-Inflammatory and Anti-Oxidant Nutritional Supplementation in Retinal Ischemic Diseases
  • 2024
  • Ingår i: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - 1661-6596 .- 1422-0067. ; 25:10
  • Forskningsöversikt (refereegranskat)abstract
    • Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.
  •  
4.
  • Yagi, Hitomi, et al. (författare)
  • Mitochondrial control of hypoxia-induced pathological retinal angiogenesis
  • 2024
  • Ingår i: ANGIOGENESIS. - 0969-6970 .- 1573-7209.
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivePathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.MethodsOIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation.ResultsIn OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV.ConclusionsMitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.
  •  
5.
  • Yanagida, Keisuke, et al. (författare)
  • Sphingosine 1-Phosphate Receptor Signaling Establishes AP-1 Gradients to Allow for Retinal Endothelial Cell Specialization
  • 2020
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 52:6, s. 779-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional mechanisms that drive angiogenesis and organotypic vascular endothelial cell specialization are poorly understood. Here, we show that retinal endothelial sphingosine 1-phosphate receptors (S1PRs), which restrain vascular endothelial growth factor (VEGF)-induced angiogenesis, spatially restrict expression of JunB, a member of the activator protein 1 (AP-1) family of transcription factors (TFs). Mechanistically, VEGF induces JunB expression at the sprouting vascular front while S1PR-dependent vascular endothelial (VE)-cadherin assembly suppresses JunB expression in the nascent vascular network, thus creating a gradient of this TF. Endothelial-specific JunB knockout mice showed diminished expression of neurovascular guidance genes and attenuated retinal vascular network progression. In addition, endothelial S1PR signaling is required for normal expression of b-catenin-dependent genes such as TCF/LEF1 and ZIC3 TFs, transporters, and junctional proteins. These results show that S1PR signaling restricts JunB function to the expanding vascular front, thus creating an AP-1 gradient and enabling organotypic endothelial cell specialization of the vascular network.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy