SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fuchs Jeanette) "

Sökning: WFRF:(Fuchs Jeanette)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sekula, Sylwia, et al. (författare)
  • Multiplexed Lipid Dip-Pen Nanolithography on Subcellular Scales for the Templating of Functional Proteins and Cell Culture
  • 2008
  • Ingår i: Small. - : Wiley. - 1613-6829 .- 1613-6810. ; 4:10, s. 1785-1793
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular patterning processes taking place in biological systems are challenging to study in vivo because of their dynamic behavior, subcellular size, and high degree of complexity. In vitro patterning of biomolecules using nanolithography allows simplification of the processes and detailed study of the dynamic interactions. Parallel dip-pen nanolithography (DPN) is uniquely capable of integrating functional biomolecules on subcellular length scales due to its constructive nature, high resolution, and high throughput. Phospholipids are particularly well suited as inks for DPN since a variety of different functional lipids can be readily patterned in parallel. Here DPN is used to spatially pattern multicomponent micro- and nano-structured supported lipid membranes and multilayers that are fluid and contain various amounts of biotin and/or nitrilotriacetic acid functional groups. The patterns are characterized by fluorescence microscopy and photoemission electron microscopy. Selective adsorption of functionalized or recombinant proteins based on streptavidin or histidine-tag coupling enables the semisynthetic fabrication of model peripheral membrane bound proteins. The biomimetic membrane patterns formed in this way are then used as substrates for cell culture, as demonstrated by the selective adhesion and activation of T-cells.
  •  
2.
  • Meinel, Felix G., et al. (författare)
  • Lung tumors on multimodal radiographs derived from grating-based X-ray imaging - A feasibility study
  • 2014
  • Ingår i: Physica Medica. - : Elsevier BV. - 1120-1797. ; 30:3, s. 352-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this study was to assess whether grating-based X-ray imaging may have a role in imaging of pulmonary nodules on radiographs. Materials and methods: A mouse lung containing multiple lung tumors was imaged using a small-animal scanner with a conventional X-ray source and a grating interferometer for phase-contrast imaging. We qualitatively compared the signal characteristics of lung nodules on transmission, dark-field and phase-contrast images. Furthermore, we quantitatively compared signal characteristics of lung tumors and the adjacent lung tissue and calculated the corresponding contrast-to-noise ratios. Results: Of the 5 tumors visualized on the transmission image, 3/5 tumors were clearly visualized and 1 tumor was faintly visualized in the dark-field image as areas of decreased small angle scattering. In the phase-contrast images, 3/5 tumors were clearly visualized, while the remaining 2 tumors were faintly visualized by the phase-shift occurring at their edges. No additional tumors were visualized in either the dark-field or phase-contrast images. Compared to the adjacent lung tissue, lung tumors were characterized by a significant decrease in transmission signal (median 0.86 vs. 0.91, p = 0.04) and increase in dark-field signal (median 0.71 vs. 0.65, p = 0.04). Median contrast-to-noise ratios for the visualization of lung nodules were 4.4 for transmission images and 1.7 for dark-field images (p = 0.04). Conclusion: Lung nodules can be visualized on all three radiograph modalities derived from grating-based X-ray imaging. However, our initial data suggest that grating-based multimodal X-ray imaging does not increase the sensitivity of chest radiographs for the detection of lung nodules. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy