SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fuselier Stephen) "

Sökning: WFRF:(Fuselier Stephen)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alm, Love, et al. (författare)
  • MMS Observations of Multiscale Hall Physics in the Magnetotail
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007.
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale mission (MMS) observations of Hall physics in the magnetotail, which compared to dayside Hall physics is a relatively unexplored topic. The plasma consists of electrons, moderately cold ions (T similar to 1.5 keV) and hot ions (T similar to 20 keV). MMS can differentiate between the cold ion demagnetization region and hot ion demagnetization regions, which suggests that MMS was observing multiscale Hall physics. The observed Hall electric field is compared with a generalized Ohm's law, accounting for multiple ion populations. The cold ion population, despite its relatively high initial temperature, has a significant impact on the Hall electric field. These results show that multiscale Hall physics is relevant over a much larger temperature range than previously observed and is relevant for the whole magnetosphere as well as for other astrophysical plasma.
  •  
2.
  • Battarbee, Markus, et al. (författare)
  • Helium in the Earth's foreshock : a global Vlasiator survey
  • 2020
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 38:5, s. 1081-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • The foreshock is a region of space upstream of the Earth's bow shock extending along the interplanetary magnetic field (IMF). It is permeated by shock-reflected ions and electrons, low-frequency waves, and various plasma transients. We investigate the extent of the He2+ foreshock using Vlasiator, a global hybrid-Vlasov simulation. We perform the first numerical global survey of the helium foreshock and interpret some historical foreshock observations in a global context. The foreshock edge is populated by both proton and helium field-aligned beams, with the proton foreshock extending slightly further into the solar wind than the helium foreshock and both extending well beyond the ultra-low frequency (ULF) wave foreshock. We compare our simulation results with Magnetosphere Multiscale (MMS) Hot Plasma Composition Analyzer (HPCA) measurements, showing how the gradient of suprathermal ion densities at the foreshock crossing can vary between events. Our analysis suggests that the IMF cone angle and the associated shock obliquity gradient can play a role in explaining this differing behaviour. We also investigate wave-ion interactions with wavelet analysis and show that the dynamics and heating of He2+ must result from proton-driven ULF waves. Enhancements in ion agyrotropy are found in relation to, for example, the ion foreshock boundary, the ULF foreshock boundary, and specular reflection of ions at the bow shock. We show that specular reflection can describe many of the foreshock ion velocity distribution function (VDF) enhancements. Wave-wave interactions deep in the foreshock cause de-coherence of wavefronts, allowing He2+ to be scattered less than protons.
  •  
3.
  • Brolies, Thomas W., et al. (författare)
  • Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft arrived at the comet 67P/Churyumov-Gerasimenko on August 6, 2014, which has made it possible to perform the first study of the solar wind interacting with the coma of a weakly outgassing comet. Aims. It is shown that the solar wind experiences large deflections (>45°) in the weak coma. The average ion velocity slows from the mass loading of newborn cometary ions, which also slows the interplanetary magnetic field (IMF) relative to the solar wind ions and subsequently creates a Lorentz force in the frame of the solar wind. The Lorentz force in the solar wind frame accelerates ions in the opposite direction of cometary pickup ion flow, and is necessary to conserve momentum. Methods. Data from the Ion and Electron Sensor are studied over several intervals of interest when significant solar wind deflection was observed. The deflections for protons and for He++ were compared with the flow of cometary pickup ions using the instrument's frame of reference. We then fit the data with a three-dimensional Maxwellian, and rotated the flow vectors into the Comet Sun Equatorial coordinate system, and compared the flow to the spacecraft's position and to the local IMF conditions. Results. Our observations show that the solar wind may be deflected in excess of 45° from the anti-sunward direction. Furthermore, the deflections change direction on a variable timescale. Solar wind protons are consistently more deflected than the He++. The deflections are not ordered by the spacecraft's position relative to the comet, but large changes in deflection are related to changes in the orthogonal IMF components
  •  
4.
  • Catapano, Filomena, et al. (författare)
  • In Situ Evidence of Ion Acceleration between Consecutive Reconnection Jet Fronts
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Processes driven by unsteady reconnection can efficiently accelerate particles in many astrophysical plasmas. An example is the reconnection jet fronts in an outflow region. We present evidence of suprathermal ion acceleration between two consecutive reconnection jet fronts observed by the Magnetospheric Multiscale mission in the terrestrial magnetotail. An earthward propagating jet is approached by a second faster jet. Between the jets, the thermal ions are mostly perpendicular to magnetic field, are trapped, and are gradually accelerated in the parallel direction up to 150 keV. Observations suggest that ions are predominantly accelerated by a Fermi-like mechanism in the contracting magnetic bottle formed between the two jet fronts. The ion acceleration mechanism is presumably efficient in other environments where jet fronts produced by variable rates of reconnection are common and where the interaction of multiple jet fronts can also develop a turbulent environment, e.g., in stellar and solar eruptions.
  •  
5.
  • Chen, Li-Jen, et al. (författare)
  • Earth's Alfvén Wings Driven by the April 2023 Coronal Mass Ejection
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a rare regime of Earth's magnetosphere interaction with sub-Alfvénic solar wind in which the windsock-like magnetosphere transforms into one with Alfvén wings. In the magnetic cloud of a Coronal Mass Ejection (CME) on 24 April 2023, NASA's Magnetospheric Multiscale mission distinguishes the following features: (a) unshocked and accelerated low-beta CME plasma coming directly against Earth's dayside magnetosphere; (b) dynamical wing filaments representing new channels of magnetic connection between the magnetosphere and foot points of the Sun's erupted flux rope; (c) cold CME ions observed with energized counter-streaming electrons, evidence of CME plasma captured due to by reconnection between magnetic-cloud and Alfvén-wing field lines. The reported measurements advance our knowledge of CME interaction with planetary magnetospheres, and open new opportunities to understand how sub-Alfv & eacute;nic plasma flows impact astrophysical bodies such as Mercury, moons of Jupiter, and exoplanets close to their host stars.
  •  
6.
  • Fayolle, E. C., et al. (författare)
  • Protostellar and cometary detections of organohalogens
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:10, s. 703-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes(1). Consequently, they have been proposed as biomarkers in the search for life on exoplanets(2). Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain(3,4). Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
  •  
7.
  • Gingell, Imogen, et al. (författare)
  • MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11003-11017
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations and observations of collisionless shocks have shown that deviations of the nominal local shock normal orientation, that is, surface waves or ripples, are expected to propagate in the ramp and overshoot of quasi-perpendicular shocks. Here we identify signatures of a surface ripple propagating during a crossing of Earth's marginally quasi-parallel (theta(Bn) similar to 45 degrees) or quasi-parallel bow shock on 27 November 2015 06: 01: 44 UTC by the Magnetospheric Multiscale (MMS) mission and determine the ripple's properties using multispacecraft methods. Using two-dimensional hybrid simulations, we confirm that surface ripples are a feature of marginally quasi-parallel and quasi-parallel shocks under the observed solar wind conditions. In addition, since these marginally quasi-parallel and quasi-parallel shocks are expected to undergo a cyclic reformation of the shock front, we discuss the impact of multiple sources of nonstationarity on shock structure. Importantly, ripples are shown to be transient phenomena, developing faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change in properties of the ripple observed by MMS is consistent with the reformation of the shock front over a time scale of an ion gyroperiod.
  •  
8.
  • Lee, Justin H., et al. (författare)
  • Application of Cold and Hot Plasma Composition Measurements to Investigate Impacts on Dusk-Side Electromagnetic Ion Cyclotron Waves
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An extended interval of perturbed magnetospheric conditions in November 2016 supported increased convection and sunward transport of plasmaspheric material. During this period of time the Magnetospheric Multiscale satellites, with their apogees along Earth's dusk-side outer magnetosphere, encountered several cold plasma density structures at the same time as plasma bulk flows capable of accelerating hidden cold plasma occurred. Investigating the charged particle and fields data during two subintervals showed that the satellites made direct measurements of cold plasmaspheric ions embedded within multicomponent hot plasmas as well as electromagnetic emissions consistent with electromagnetic ion cyclotron (EMIC) waves. The complex in situ ion composition measurements were applied to linear wave modeling to interpret the impacts of cold and hot ion species on wave growth and band structure. Although the waves for both intervals were predicted to have peak growth rate below omega(He+), substantial differences were observed among all other dispersive properties. The modeling also showed EMIC waves generated in the presence of heavy ions had growth rates and unstable wave numbers always smaller than predicted for a pure proton-electron plasma. The results provide implications for future investigation of EMIC wave generation with and without direct measurements of the cold and hot plasma composition as well as of subsequent wave-particle interactions.
  •  
9.
  • Lee, Justin H., et al. (författare)
  • MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orbiting Earth's dayside outer magnetosphere on 29 September 2015, the Magnetospheric Multiscale (MMS) satellites measured plasma composition, simultaneous electromagnetic ion cyclotron waves, and intermittent fast plasma flows consistent with ultralow frequency waves or convection. Such flows can accelerate typically unobservable low-energy plasma into a measurable energy range of spacecraft plasma instrumentation. We exploit the flow occurrence to ensure measurement of cold ion species alongside the hot particles-consisting of ionospheric heavy ions and solar wind He++-during a subinterval of wave emissions with spectral properties previously described as peculiar. Through application of the composition and multisatellite wave vector data to linear theory, we demonstrate the emissions are in fact consistent with theory, growing naturally in the He++ band with sufficient free energy.
  •  
10.
  • Nakamura, Rumi, et al. (författare)
  • Multiscale Currents Observed by MMS in the Flow Braking Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1260-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
  •  
11.
  • Nakamura, Rumi, et al. (författare)
  • Near-Earth plasma sheet boundary dynamics during substorm dipolarization
  • 2017
  • Ingår i: Earth Planets and Space. - : Springer Berlin/Heidelberg. - 1343-8832 .- 1880-5981. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL similar to -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another fieldaligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.
  •  
12.
  • Schwartz, Steven J., et al. (författare)
  • Ion Kinetics in a Hot Flow Anomaly : MMS Observations
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 45:21, s. 11520-11529
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Flow Anomalies (HFAs) are transients observed at planetary bow shocks, formed by the shock interaction with a convected interplanetary current sheet. The primary interpretation relies on reflected ions channeled upstream along the current sheet. The short duration of HFAs has made direct observations of this process difficult. We employ high resolution measurements by NASA's Magnetospheric Multiscale Mission to probe the ion microphysics within a HFA. Magnetospheric Multiscale Mission data reveal a smoothly varying internal density and pressure, which increase toward the trailing edge of the HFA, sweeping up particles trapped within the current sheet. We find remnants of reflected or other backstreaming ions traveling along the current sheet, but most of these are not fast enough to out-run the incident current sheet convection. Despite the high level of internal turbulence, incident and backstreaming ions appear to couple gyro-kinetically in a coherent manner. Plain Language Summary Shock waves in space are responsible for energizing particles and diverting supersonic flows around planets and other obstacles. Explosive events known as Hot Flow Anomalies (HFAs) arise when a rapid change in the interplanetary magnetic field arrives at the bow shock formed by, for example, the supersonic solar wind plasma flow from the Sun impinging on the Earth's magnetic environment. HFAs are known to produce impacts all the way to ground level, but the physics responsible for their formation occur too rapidly to be resolved by previous satellite missions. This paper employs NASA's fleet of four Magnetospheric Multiscale satellites to reveal for the first time clear, discreet populations of ions that interact coherently to produce the extreme heating and deflection.
  •  
13.
  • Toledo-Redondo, Sergio, et al. (författare)
  • Cold ion demagnetization near the X-line of magnetic reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6759-6767
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earth's magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10keV), and magnetosheath (1keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (approximate to 15km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E x B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.
  •  
14.
  • Toledo-Redondo, Sergio, et al. (författare)
  • Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:9, s. 9396-9413
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold ions (few tens of eV) of ionospheric origin are commonly observed on the magnetospheric side of the Earth's dayside magnetopause. As a result, they can participate in magnetic reconnection, changing locally the reconnection rate and being accelerated and heated. We present four events where cold ion heating was observed by the Magnetospheric Multiscale mission, associated with the magnetospheric Hall E field region of magnetic reconnection. For two of the events the cold ion density was small compared to the magnetosheath density, and the cold ions were heated roughly to the same temperature as magnetosheath ions inside the exhaust. On the other hand, for the other two events the cold ion density was comparable to the magnetosheath density and the cold ion heating observed was significantly smaller. Magnetic reconnection converts magnetic energy into particle energy, and ion heating is known to dominate the energy partition. We find that at least 10-25% of the energy spent by reconnection into ion heating went into magnetospheric cold ion heating. The total energy budget for cold ions may be even higher when properly accounting for the heavier species, namely helium and oxygen. Large E field fluctuations are observed in this cold ion heating region, i.e., gradients and waves, that are likely the source of particle energization. Plain Language Summary The magnetic field of Earth creates a natural shield that isolates and protects us from the particles and fields coming from our star, the Sun. This natural shield is called the magnetosphere and is filled by plasma. The particles coming from the Sun form another plasma called the solar wind and are usually deviated around the magnetosphere. However, under certain circumstances these two plasmas can reconnect (magnetic reconnection), and part of the energy and mass of the two plasmas is interchanged. Magnetic reconnection is the driver of storms and substorms inside the magnetosphere. In this work, we investigate what occurs to particles of very low energy (cold ions) of ionospheric origin when they reach the reconnecting boundary of the magnetosphere. It is found that they are energized and take an important part of the energy spent in reconnecting the plasmas. The plasma boundary develops spatial structures and emits waves that are able to heat the cold ions. Once heated, these cold ions irreversibly will escape the Earth's magnetosphere to never come back to Earth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy