SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fyfe Ralph M.) "

Search: WFRF:(Fyfe Ralph M.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Stephens, Lucas, et al. (author)
  • Archaeological assessment reveals Earth’s early transformation through land use
  • 2019
  • In: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 365:6456, s. 897-902
  • Journal article (peer-reviewed)abstract
    • Humans began to leave lasting impacts on Earth’s surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth’s transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.
  •  
2.
  • Fyfe, Ralph M., et al. (author)
  • The Holocene vegetation cover of Britain and Ireland : overcoming problems of scale and discerning patterns of openness
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 73, s. 132-148
  • Journal article (peer-reviewed)abstract
    • The vegetation of Europe has undergone substantial changes during the course of the Holocene epoch, resulting from range expansion of plants following climate amelioration, competition between taxa and disturbance through anthropogenic activities. Much of the detail of this pattern is understood from decades of pollen analytical work across Europe, and this understanding has been used to address questions relating to vegetation-climate feedback, biogeography and human impact. Recent advances in modelling the relationship between pollen and vegetation now make it possible to transform pollen proportions into estimates of vegetation cover at both regional and local spatial scales, using the Landscape Reconstruction Algorithm (LRA), i.e. the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) and the LOVE (Local VEgetation) models. This paper presents the compilation and analysis of 73 pollen stratigraphies from the British Isles, to assess the application of the LRA and describe the pattern of landscape/woodland openness (i.e. the cover of low herb and bushy vegetation) through the Holocene. The results show that multiple small sites can be used as an effective replacement for a single large site for the reconstruction of regional vegetation cover. The REVEALS vegetation estimates imply that the British Isles had a greater degree of landscape/woodland openness at the regional scale than areas on the European mainland. There is considerable spatial bias in the British Isles dataset towards wetland areas and uplands, which may explain higher estimates of landscape openness compared with Europe. Where multiple estimates of regional vegetation are available from within the same region inter-regional differences are greater than intra-regional differences, supporting the use of the REVEALS model to the estimation of regional vegetation from pollen data. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
3.
  • Giesecke, Thomas, et al. (author)
  • Towards mapping the late Quaternary vegetation change of Europe.
  • 2014
  • In: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 23:1, s. 75-86
  • Journal article (peer-reviewed)abstract
    • The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.
  •  
4.
  • Githumbi, Esther, et al. (author)
  • Holocene quantitative pollen-based vegetation reconstructions in Europe for climate modelling: LandClim II
  • 2019
  • Conference paper (peer-reviewed)abstract
    • Understanding land use and land cover (LULC) change through time is an important aspect when attempting to interpret human-environment interactions through time. Palaeoenvironmental techniques have been crucial in bridging this gap by providing information that has been used to estimate climate change, vegetation change, sea level change etc. through time using a variety of proxies. Producing quantitative land-cover reconstructions has been an aim and a challenge with several methods attempted during the decades. In this project, we use the REVEALS model has been tested and validated in several regions of the world.We use REVEALS-based quantitative reconstructions of vegetation change to investigate the biogeochemical and biogeophysical forcings of land-cover change on climate. In the first phase of this project, LandClim I, quantitative vegetation reconstructions were produced for Europe (Mediterranean area excluded) focusing on five time windows of the Holocene between 6ka BP and present. The results from a regional climate model showed that the impact of the reconstructed LULC between 6 ka and 0.2 ka BP via biogeophysical forcing varied geographically and seasonally. We present the REVEALS quantitative pollen-based vegetation reconstruction from the ongoing second phase of the project LandClim II “Quantification of the biogeophysical and biogeochemical forcings from anthropogenic deforestation on regional Holocene climate in Europe”. This reconstruction covers entire Europe and is transient over the Holocene with a time resolution of 500 years between 11.2 and 0.7ka BP, and 100 to 300 years from 0.7ka BP to modern time.
  •  
5.
  • Kaplan, Jed O., et al. (author)
  • Constraining the Deforestation History of Europe : Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
  • 2017
  • In: Land. - : MDPI. - 2073-445X. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we comparemodeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
  •  
6.
  • Marquer, Laurent, et al. (author)
  • Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter
  • 2014
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 90, s. 199-216
  • Journal article (peer-reviewed)abstract
    • We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past. (C) Elsevier Ltd.All tights reserved.
  •  
7.
  • Marquer, Laurent, et al. (author)
  • Quantifying the effects of land use and climate on Holocene vegetation in Europe
  • 2017
  • In: Quaternary Science Reviews. - : Pergamon Press. - 0277-3791 .- 1873-457X. ; 171, s. 20-37
  • Journal article (peer-reviewed)abstract
    • Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
8.
  • Nikulina, Anastasia, et al. (author)
  • Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe : Proxies and Challenges
  • 2022
  • In: Journal of archaeological method and theory. - : Springer Nature. - 1072-5369 .- 1573-7764. ; 29, s. 989-1033
  • Journal article (peer-reviewed)abstract
    • We review palaeoenvironmental proxies and combinations of these relevant for understanding hunter-gatherer niche construction activities in pre-agricultural Europe. Our approach consists of two steps: (1) identify the possible range of hunter-gatherer impacts on landscapes based on ethnographic studies; (2) evaluate proxies possibly reflecting these impacts for both the Eemian (Last Interglacial, Middle Palaeolithic) and the Early-Middle Holocene (Mesolithic). We found these paleoenvironmental proxies were not able to unequivocally establish clear-cut differences between specific anthropogenic, climatic and megafaunal impacts for either time period in this area. We discuss case studies for both periods and show that published evidence for Mesolithic manipulation of landscapes is based on the interpretation of comparable data as available for the Last Interglacial. If one applies the 'Mesolithic' interpretation schemes to the Neanderthal record, three common niche construction activities can be hypothesised: vegetation burning, plant manipulation and impact on animal species presence and abundance. Our review suggests that as strong a case can be made for a Neanderthal impact on landscapes as for anthropogenic landscape changes during the Mesolithic, even though the Neanderthal evidence comes from only one high-resolution site complex. Further research should include attempts (e.g. by means of modelling studies) to establish whether hunter-gatherer impact on landscapes played out at a local level only versus at a larger scale during both time periods, while we also need to obtain comparative data on the population sizes of Last Interglacial and Holocene hunter-gatherers, as these are usually inferred to have differed significantly.
  •  
9.
  • Pearce, Elena A., et al. (author)
  • Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens
  • 2023
  • In: Science Advances. - 2375-2548. ; 9:45
  • Journal article (peer-reviewed)abstract
    • The extent of vegetation openness in past European landscapes is widely debated. In particular, the temperate forest biome has traditionally been defined as dense, closed-canopy forest; however, some argue that large herbivores maintained greater openness or even wood-pasture conditions. Here, we address this question for the Last Interglacial period (129,000–116,000 years ago), before Homo sapiens–linked megafauna declines and anthropogenic landscape transformation. We applied the vegetation reconstruction method REVEALS to 96 Last Interglacial pollen records. We found that light woodland and open vegetation represented, on average, more than 50% cover during this period. The degree of openness was highly variable and only partially linked to climatic factors, indicating the importance of natural disturbance regimes. Our results show that the temperate forest biome was historically heterogeneous rather than uniformly dense, which is consistent with the dependency of much of contemporary European biodiversity on open vegetation and light woodland.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (8)
conference paper (1)
Type of content
peer-reviewed (9)
Author/Editor
Gaillard, Marie-José ... (6)
Mazier, Florence (5)
Sugita, Shinya (5)
Nielsen, Anne Birgit ... (4)
Fyfe, Ralph (4)
Giesecke, Thomas (3)
show more...
Marquer, Laurent (3)
Poska, Anneli (3)
Kaplan, Jed O. (3)
Alenius, Teija (2)
Gaillard, Marie-Jose (2)
Smith, Benjamin (2)
Bjune, Anne E. (2)
Seppa, Heikki (2)
Herzschuh, Ulrike (2)
Birks, H. John B. (2)
Svenning, Jens-Chris ... (2)
Pidek, Irena Agniesz ... (1)
Noryskiewicz, Bozena (1)
Koff, Tiiu (1)
van Leeuwen, Jacquel ... (1)
Martinez, Alexandre (1)
Lindström, Johan (1)
Zhang, Qiong (1)
Jönsson, Anna Maria (1)
Möller, Per (1)
Blaauw, Maarten (1)
Buckland, Philip I., ... (1)
Finsinger, Walter (1)
Lotter, André F. (1)
Broström, Anna (1)
Kjellström, Erik (1)
Lechterbeck, Jutta (1)
Schmidt, Peter (1)
Olofsson, Jörgen (1)
Arthur, Frank (1)
Hatlestad, Kailin (1)
Roche, Didier M (1)
Renssen, Hans (1)
Magri, Donatella (1)
Normand, Signe (1)
Schläfli, Patrick (1)
Barton, C. Michael (1)
Mighall, Tim (1)
Odgaard, Bent Vad (1)
Robertsson, Ann-Mari ... (1)
López Sáez, José Ant ... (1)
Bradshaw, Richard H. ... (1)
Binney, Heather (1)
Lu, Zhengyao (1)
show less...
University
Linnaeus University (7)
Lund University (5)
Umeå University (1)
Uppsala University (1)
Stockholm University (1)
Language
English (9)
Research subject (UKÄ/SCB)
Natural sciences (9)
Humanities (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view