SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gülk Birte 1994) "

Sökning: WFRF:(Gülk Birte 1994)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gülk, Birte, 1994, et al. (författare)
  • Impacts of Vertical Convective Mixing Schemes and Freshwater Forcing on the 2016-2017 Maud Rise Polynya Openings in a Regional Ocean Simulation
  • 2024
  • Ingår i: JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS. - 1942-2466. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct representation of the Maud Rise open-ocean polynya in the Weddell Sea remains a challenge for ocean models. Here we reproduce the most recent polynya openings in 2016-2017 using a regional configuration, and assess their dependencies on vertical convective mixing schemes and freshwater forcing, both separately and in combination. We test three vertical convective mixing schemes: the enhanced vertical diffusion (EVD), the Eddy-Diffusivity Mass-Flux (EDMF) parameterization, and a modified version of EDMF accounting for thermobaric effects. Using simulations for the period 2007-2017, we find that the modified EDMF reproduces the observed climatological evolution of the mixed layer depth better than the original EDMF and the EVD, but a polynya fails to open due to excessive freshwater forcing. We thus use the modified EDMF to perform sensitivity experiments with reduced precipitation during 2012-2017. The imposed freshwater forcing strongly affects the number of years with polynyas. The simulation with the best representation of the 2016-2017 polynyas is analyzed to evaluate the triggering mechanisms. The 2016 polynya was induced by the action of thermobaric instabilities on a weak ambient stratification. This opening preconditioned the water column for 2017, which produced a stronger polynya. By examining the impacts of the different convective mixing schemes, we show that the modified EDMF generates more realistic patterns of deep convection. Our results highlight the importance of surface freshwater forcing and thermobaricity in governing deep convection around Maud Rise, and the need to represent thermobaric instabilities to realistically model Maud Rise polynyas. We investigate the impacts of representing numerical vertical mixing and surface freshwater forcing in a regional ocean model on polynyas (large openings in the pack ice) at Maud Rise, Southern Ocean. Maud Rise is prone to hosting polynyas, often associated with deep convection, which is a local vertical mixing process homogenizing the water column between surface and depths of several hundred meters. Numerical models often use simplistic strategies to represent this process, but improved parameterizations have recently become available. In this work, we test the impact of the representation of convective mixing in a particularly sensitive region. The last Maud Rise polynyas were observed in 2016 and 2017. Our regional simulation is capable of reproducing these polynyas, which has long been a challenge for ocean-sea ice models. We show that the 2016 polynya resulted from the action of a vertical instability at depth acting on weak ambient stratification. This event preconditioned the stronger 2017 polynya and deep convection. We conclude that representing convective plumes as a sub-grid scale process in models leads to a more realistic representation of open-ocean polynyas and associated convection events. The Eddy-Diffusivity Mass-Flux (EDMF) parameterization is tested in a regional simulation of the ocean around Maud Rise Thermobaric effects on convective plumes are enabled by modifying the EDMF parameterization Simulations of Maud Rise polynyas are highly sensitive to freshwater forcing and mixing schemes
  •  
2.
  • Gülk, Birte, 1994, et al. (författare)
  • Variability and Remote Controls of the Warm-Water Halo and Taylor Cap at Maud Rise
  • 2023
  • Ingår i: Journal of Geophysical Research: Oceans. - 2169-9275 .- 2169-9291. ; 128:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The region of Maud Rise, a seamount in the Weddell Sea, is known for the occurrence of irregular polynya openings during the winter months. Hydrographic observations have shown the presence of a warmer water mass below the mixed layer along the seamount's flanks, commonly termed the warm-water Halo, surrounding a colder region above the rise, the Taylor Cap. Here we use two observational data sets, an eddy-permitting reanalysis product and regional high-resolution simulations, to investigate the interannual variability of the Halo and Taylor Cap for the period 2007–2022. Observations include novel hydrographic profiles obtained in the Maud Rise area in January 2022, during the first SO-CHIC cruise. It is demonstrated that the temperature of deep waters around Maud Rise exhibits strong interannual variability within the Halo and Taylor Cap, occasionally to such an extent that the two features become indistinguishable. A warming of deep waters by as much as 0.8°C is observed in the Taylor Cap during the years preceding the opening of a polynya in 2016 and 2017, starting in 2011. By analyzing regional simulations, we show that most of the observed variability in the Halo is forced remotely by advection of deep waters from the Weddell Gyre into the region surrounding Maud Rise. Our highest-resolution simulation indicates that mesoscale eddies subsequently transfer the properties of the Halo's deep waters onto the Taylor Cap. The eddies responsible for such transfer originate in an abrupt retroflection along the inner flank of the Halo.
  •  
3.
  • Sallee, J. B., et al. (författare)
  • Southern ocean carbon and heat impact on climate
  • 2023
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1364-503X .- 1471-2962. ; 381:2249
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea-ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy