SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(GRANAT L) "

Sökning: WFRF:(GRANAT L)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Budhavant, K. B., et al. (författare)
  • Chemical composition of the inorganic fraction of cloud-water at a high altitude site in West India
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 88, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from a ground-based cloud-water collection system intercepting water from clouds at a mountain field station, Sinhagad near Pune in India are presented. This study was part of an Indo-Swedish Collaboration Project on Atmospheric Brown Cloud-Asia (ABC-A). Cloud-water and rainwater (wet-only) samples were collected during June 2007-Dec. 2010. Concentrations of major anions and cations were determined. Ion concentrations were generally higher (NO3-, about 8 times; SO42- and K+, 5 times; NH4+ times and Cl-, Na+, Ca2+, Mg2+ 3 times) in cloud-water samples than in rainwater samples collected during the same days. The average pH of cloud-water samples was 6.0 with about 20% of the values below 5.6 and only 4% less than 5.0. Despite high concentrations of SO42- and NO3- the cloud water samples were on average not more acidic than rainwater samples. This is different from most of the other studies of cloud-water composition which have noted a substantially higher acidity (i.e. lower pH) in cloud-water than in rainwater. The slightly alkaline (pH > 5.6) nature of the cloud-water samples is mainly due to the presence of soil derived calcium carbonate in quantities more than enough to neutralize the acids or their precursors. A separation of the cloud-water data into trajectory groups showed that samples in air-masses having spent the last few days over the Indian sub-continent were in general more acidic (due to anthropogenic emissions) than those collected during days with air-masses of marine origin. A high correlation mutually between Ca2+, Na+, NO3- and SO42- makes it difficult to estimate the contribution to SO42- from different sources. Anthropogenic SO2- emissions and soil dust may both give important contributions.
  •  
3.
  • Engardt, M., et al. (författare)
  • Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations
  • 2017
  • Ingår i: Tellus, Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 69:1, s. Article: 1328945-
  • Tidskriftsartikel (refereegranskat)abstract
    • As a contribution to an EU project which dealt with the effects of climate change, air pollution impacts and ecosystems, two different atmospheric chemical transport models were used to simulate the depositions of acidifying and eutrophying pollutants over Europe for the period 1900-2050. Given the unavoidable uncertainties in the historical inputs to these simulations (emissions, meteorology), we generated a new and unique data-set for the purposes of model evaluation; comprising data from the European Air Chemistry Network (EACN) in operation from 1955 to early 1980s and more recent data from the EMEP monitoring network. The two models showed similar and reasonable skills in reproducing both the EACN and EMEP observational data although the MATCH model consistently simulates higher concentrations and depositions than the EMEP model. To further assess the models' ability to reproduce the long-term trend in sulphur and nitrogen deposition we compared modelled concentrations of major ions in precipitation with data extracted from a glacier in the European Alps. While, the shape and timing of the nss-sulphate data agrees reasonably, the ice core data indicate persistently high nitrogen concentrations of oxidised and reduced nitrogen after the 1980s which does not correspond to the model simulations or data from Western Europe in the EMEP monitoring network. This study concludes that nss-sulphate deposition to Europe was already clearly elevated in the year 1900, but has now (mid-2010s) decreased to about 70% of what it was at the beginning of the last century. The deposition of oxidised nitrogen to Europe peaked during the 1980s but has since decreased to half of its maximum value; still it is 3-4 times higher than in the year 1900. The annual deposition of reduced nitrogen to Europe is currently more than two times as high as the conditions in the year 1900.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy