SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaffney AM) "

Sökning: WFRF:(Gaffney AM)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Hughes, T, et al. (författare)
  • Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus
  • 2012
  • Ingår i: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 71:5, s. 694-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci.MethodsA total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex–gene interaction was further validated using parametric and non-parametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients.ResultsA significantly higher cumulative genetic risk for SLE was observed in men than in women. (P=4.52x10-8) A significant sex–gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men.ConclusionsThe data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Kim, K, et al. (författare)
  • Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries
  • 2012
  • Ingår i: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 71:11, s. 1809-1814
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αM (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.MethodsThe authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single-marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.ResultsThe A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).ConclusionThese findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
  •  
11.
  • Larsson, Jörgen, et al. (författare)
  • Opportunities and challenges using short-pulse X-ray sources.
  • 2005
  • Ingår i: Second International Conference on Photo-Induced Phase Transitions: Cooperative, Nonlinear and Functional Properties. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 21, s. 87-94
  • Konferensbidrag (refereegranskat)abstract
    • Free-electron lasers will change the way we carry out time-resolved X-ray experiments. At present date, we use laser-produced plasma sources or synchrotron radiation. Laser-produced plasma sources have short pulses, but unfortunately large pulse-to-pulse fluctuations and large divergence. Synchrotron radiation from third generation source provide collimated and stable beams, but unfortunately long pulses. This means that either the time-resolution is limited to 100 ps or rather complex set-ups involving slicing or streak cameras are needed. Hard X-ray free-electron lasers will combine the best properties of present-day sources and increase the number of photons by many orders of magnitude. Already today, a precursor to the free-electron lasers has been built at Stanford Linear Accelerator Centre (SLAC). The Sub-Picosecond Photon Source (SPPS) has already shown the opportunities and challenges of using short-pulse X-ray sources.
  •  
12.
  •  
13.
  • Lindenberg, AM, et al. (författare)
  • Atomic-scale visualization of inertial dynamics
  • 2005
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 308:5720, s. 392-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Wiley, MM, et al. (författare)
  • FUNCTIONAL EVALUATION OF THE SJOGREN'S SYNDROME AND SYSTEMIC LUPUS ERYTHEMATOSUS DDX6-CXCR5 RISK INTERVAL
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 89-90
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjögren’s Syndrome (SS) and Systemic Lupus Erythematosus (SLE) are distinct chronic, complex autoimmune diseases with shared characteristics such as autoantibodies, heightened interferons, and polyarthritis. SS and SLE genome-wide association studies (GWAS) report strong associations with theDDX6-CXCR5risk interval. DDX6 suppresses interferon stimulated gene expression and CXCR5 regulates T cell functions implicated in autoimmunity.Objectives:To identify functional variants that impact regulation in theDDX6-CXCR5interval.Methods:Fine-mapping was done using ImmunoChip data from 3785 SLE, 1916 SS cases and 6893 population controls of European ancestry that were imputed and tested for SNP-trait association. Bayesian statistics assigned posterior probabilities to SNPs and defined a credible set of risk variants. Bioinformatic analyses further prioritized variants with predicted functionality. Electrophoretic mobility shift assays (EMSAs) and luciferase expression were used to validate predicted SNPs in EBV transformed B (EBV B) cells.Results:While some differences were observed, the overall SS and SLE association signals were similar. SNP-SS rs9736016 nearCXCR5and SNP-SLE rs76409436 nearDDX6were the most significant but did not show evidence of functionality. Bayesian statistics defined credible sets of variants in strong D’ in common between both SS and SLE. Bioinformatics analyses (Haploreg, RegulomeDB, ENCODE data, etc) further refined the credible set and identified 5 common SNPs with strong evidence of functionality in immune cell types: rs4938572, rs4936443, rs57494551, rs7117261 and rs4938573. EMSAs showed a significant increase in protein binding to the risk allele of rs57494551 (p=0.0001), rs7117261 (p=0.0001) and rs4938573 (p=0.0003), but not the others, using nuclear lysates from EBV B cells. Luciferase vectors with a minimal promoter or no promoter were used to test for enhancer or promoter activity, respectively. To this end, the rs57494551 risk allele exhibited a significant increase in enhancer activity (p=0.0001). In contrast, the rs7117261 risk allele decreased enhancer activity (p=0.018). The rs4938573 risk allele decreased enhancer (p=0.043) and promoter (p=0.024) activity. While rs7117261 or rs4938573 were not reported in eQTL databases, GTex data reported rs57494551 as an eQTL that altersDDX6expression in whole blood (p=1.8E-7). Additionally, these functional SNPs have been associated with looping events to several proximal promoters in nearby genes in immune cells.Conclusion:SS and SLE have similar genomic architecture across theDDX6-CXCR5risk interval. Multiple variants in the credible set exhibited allele specific changes in protein binding, as well as modified enhancer activity, promoter activity or both. Ongoing studies will use Cas9 in EBV B cells to determine which other loci are within the local regulatory network.Disclosure of Interests:Mandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Michelle L Joachims: None declared, Anna M Stolarczyk: None declared, Astrid Rasmussen Speakers bureau: Novartis, ThermoFischer, Simon J. Bowman Consultant of: Astrazeneca, Biogen, BMS, Celgene, Medimmune, MTPharma, Novartis, Ono, UCB, xtlbio, Glapagos, Speakers bureau: Novartis, Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James Grant/research support from: Progentec Diagnostics, Inc, Consultant of: Abbvie, Novartis, Jannsen, Lars Ronnblom Grant/research support from: AZ, Speakers bureau: AZ, R Hal Scofield Grant/research support from: Pfizer, Xavier Mariette: None declared, Wan-fai Ng: None declared, Kathy L Sivils: None declared, Gunnel Nordmark: None declared, Betty Tsao: None declared, Christopher Lessard: None declared
  •  
21.
  • Wiley, MM, et al. (författare)
  • SJOGREN'S DISEASE AND SYSTEMIC LUPUS ERYTHEMATOSUS DDX6-CXCR5 RISK INTERVALS REVEAL COMMON SNPS WITH FUNCTIONAL SIGNIFICANCE IN IMMUNE AND SALIVARY GLAND CELLS
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 269-270
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjögren’s Disease (SjD) and Systemic Lupus Erythematosus (SLE) are autoimmune diseases with several shared characteristics and similar genome-wide significant associations with the DDX6-CXCR5 locus. DDX6 suppresses interferon-stimulated gene expression and CXCR5 regulates T cell functions implicated in autoimmunity.ObjectivesTo identify and characterize functional SNPs in the DDX6-CXCR5 interval.MethodsImmunoChip data from European populations (3785 SLE cases; 1916 SjD cases; 6893 controls) were imputed and SNP-trait associations tested. Bayesian statistics defined a credible SNP set that was refined using bioinformatic analyses (RegulomeDB, Haploreg, ENCODE, promoter capture Hi-C, eQTLs, etc.). Electrophoretic mobility shift assays (EMSAs) and luciferase expression assays were used to test allele-specific SNP function in EBV-transformed B (EBV B) cells, Daudi B cells, Jurkat T cells, THP1 monocytes, and A253 salivary gland cell lines. Chromatin conformation capture with quantitative PCR (3C-qPCR) was used to assess long-range chromatin interactions.ResultsFine mapping of the SjD and SLE associations found similar SNP associations. Bioinformatic analyses identified 5 common SNPs with strong evidence of functionality in immune cell types: rs57494551 in an intron of DDX6, and rs4938572, rs4936443, rs7117261, and rs4938573 in the promoter/enhancer region of DDX6 and CXCR5. EMSAs and luciferase experiments showed cell type-specific differences in protein binding and promoter or enhancer activity, respectively, at each SNP. Risk allele of rs57494551 increased enhancer activity in B cells and A253 cells (p<0.001), but decreased promoter activity in T cells and A253 cells (p<0.01). SNP rs4938572 is an eQTL of DDX6 in T cells, and the risk allele significantly increased protein binding, promoter and enhancer activity in T cells (p<0.01). Risk allele of rs4938572 also increased promoter activity in A253 cells (p<0.001), but had no effect on promoter or enhancer activity in B cells. SNP rs4936443 showed no promoter or enhancer activity in immune cells, but the risk allele showed significant promoter and enhancer (p<0.001) activity in A253 cells. SNP rs7117261 showed decreased enhancer activity in EBV B cells, T cells, and A253 cells (p<0.05) and increased promoter activity in A253 cells (p<0.001). SNP rs4938573 showed decreased promoter activity in EBV B cells, T cell and A253 cells (p<0.05), decreased promoter activity in EBV B cells (p<0.05), and increased enhancer activity in A253 cells (p<0.0001). Overall, A253 cells exhibited more allele-specific effects on promoter and enhancer activity across the five SNPs compared to tested immune cells. In addition to DDX6 and CXCR5, rs57494551 and/or rs4938572 are reported eQTLs for several other genes of interest in the local chromatin regulatory network: IL10RA in T cells, TRAPPC4 in salivary gland and activated macrophages, and long non-coding (lnc)RNA AP002954.1 in T cells and whole blood. 3C-qPCR in EBV B and A253 cells showed that the two regulatory regions carrying rs4938572 or rs57494551 interacted with a region upstream of DDX6 that includes AP002954.1. Hi-C data showed looping between AP002954.1 and the regulatory region carrying rs4938572 and rs57494551 in T cells.ConclusionSjD and SLE share similar genomic architecture across the DDX6-CXCR5 risk interval with several common SNPs showing immune and salivary gland cell type-specific allelic effects on protein binding and/or enhancer/promoter activity. Extensive bioinformatic analyses suggest that the SNPs likely work within the local chromatin regulatory network to regulate cell type-specific expression of several genes on the interval. Ongoing studies will use 3C-qPCR to assess allele-specific chromatin interactions between the SNPs and these genes in different cells types, and CRISPR to determine how the risk alleles alters expression.Disclosure of InterestsMandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Michelle L Joachims: None declared, Anna M Stolarczyk: None declared, Anna Nagel: None declared, Astrid Rasmussen: None declared, Simon J. Bowman Consultant of: Abbvie, Galapagos, and Novartis in 2020-2021, Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James: None declared, Lars Ronnblom: None declared, R Hal Scofield: None declared, Xavier Mariette: None declared, Wan Fai Ng: None declared, Kathy Sivils Employee of: current employee of Janssen., Gunnel Nordmark: None declared, Betty Tsao: None declared, Christopher Lessard: None declared
  •  
22.
  •  
23.
  •  
24.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy