SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galand M.) "

Sökning: WFRF:(Galand M.)

  • Resultat 1-50 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
3.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
4.
  • Fuselier, S. A., et al. (författare)
  • Ion chemistry in the coma of comet 67P near perihelion
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S67-S77
  • Tidskriftsartikel (refereegranskat)abstract
    • The coma and the comet-solar wind interaction of comet 67P/Churyumov-Gerasimenko changed dramatically from the initial Rosetta spacecraft encounter in 2014 August through perihelion in 2015 August. Just before equinox (at 1.6 au from the Sun), the solar wind signal disappeared and two regions of different cometary ion characteristics were observed. These 'outer' and 'inner' regions have cometary ion characteristics similar to outside and inside the ion pileup region observed during the Giotto approach to comet 1P/Halley. Rosetta/Double-Focusing Mass Spectrometer ion mass spectrometer observations are used here to investigate the H3O+/H2O+ ratio in the outer and inner regions at 67P/Churyumov-Gerasimenko. The H3O+/H2O+ ratio and the H3O+ signal are observed to increase in the transition from the outer to the inner region and the H3O+ signal appears to be weakly correlated with cometary ion energy. These ion composition changes are similar to the ones observed during the 1P/Halley flyby. Modelling is used to determine the importance of neutral composition and transport of neutrals and ions away from the nucleus. This modelling demonstrates that changes in the H3O+/H2O+ ratio appear to be driven largely by transport properties and only weakly by neutral composition in the coma.
  •  
5.
  • Fuselier, S. A., et al. (författare)
  • ROSINA/DFMS and IES observations of 67P : Ion-neutral chemistry in the coma of a weakly outgassing comet
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta encounter with comet 67P/Churyumov-Gerasimenko provides a unique opportunity for an in situ, up-close investigation of ion-neutral chemistry in the coma of a weakly outgassing comet far from the Sun. Aims. Observations of primary and secondary ions and modeling are used to investigate the role of ion-neutral chemistry within the thin coma. Methods. Observations from late October through mid-December 2014 show the continuous presence of the solar wind 30 km from the comet nucleus. These and other observations indicate that there is no contact surface and the solar wind has direct access to the nucleus. On several occasions during this time period, the Rosetta/ROSINA/Double Focusing Mass Spectrometer measured the low-energy ion composition in the coma. Organic volatiles and water group ions and their breakup products (masses 14 through 19), COP, and CO, (masses 28 and 44) and other mass peaks (at masses 26, 27, and possibly 30) were observed. Secondary ions include H3O+ and HCO+ (masses 19 and 29). These secondary ions indicate ion-neutral chemistry in the thin coma of the comet. A relatively simple model is constructed to account for the low H3O /H2O+ and HCO /CO+ ratios observed in a water dominated coma. Results from this simple model are compared with results from models that include a more detailed chemical reaction network. Results. At low outgassing rates, predictions from the simple model agree with observations and with results from more complex models that include much more chemistry. At higher outgassing rates, the ion-neutral chemistry is still limited and high HCO /CO+ ratios are predicted and observed. However, at higher outgassing rates, the model predicts high H3O /H2O+ ratios and the observed ratios are often low. These low ratios may be the result of the highly heterogeneous nature of the coma, where CO and CO2 number densities can exceed that of water.
  •  
6.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
7.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
8.
  • Beth, A., et al. (författare)
  • First in situ detection of the cometary ammonium ion NH4+ (protonated ammonia NH3) in the coma of 67P/C-G near perihelion
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S562-S572
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the first in situ detection of the ammonium ion NH4+ at 67P/Churyumov-Gerasimenko (67P/C-G) in a cometary coma, using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). Unlike neutral and ion spectrometers onboard previous cometary missions, the ROSINA/DFMS spectrometer, when operated in ion mode, offers the capability to distinguish NH4+ from H2O+ in a cometary coma. We present here the ion data analysis of mass-to-charge ratios 18 and 19 at high spectral resolution and compare the results with an ionospheric model to put these results into context. The model confirms that the ammonium ion NH4+ is one of the most abundant ion species, as predicted, in the coma near perihelion.
  •  
9.
  • Galand, M., et al. (författare)
  • Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S331-S351
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov-Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (< 20 km) and large heliocentric distances (> 3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density - with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7-10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population.
  •  
10.
  • Goetz, C., et al. (författare)
  • Cometary plasma science : Open science questions for future space missions
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Tidskriftsartikel (refereegranskat)abstract
    • Comets hold the key to the understanding of our Solar System, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma, and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains dust grains, released from the comet nucleus. As a cometary atmosphere develops when the comet travels through the Solar System, large-scale structures, such as the plasma boundaries, develop and disappear, while at planets such large-scale structures are only accessible in their fully grown, quasi-steady state. In situ measurements at comets enable us to learn both how such large-scale structures are formed or reformed and how small-scale processes in the plasma affect the formation and properties of these large scale structures. Furthermore, a comet goes through a wide range of parameter regimes during its life cycle, where either collisional processes, involving neutrals and charged particles, or collisionless processes are at play, and might even compete in complicated transitional regimes. Thus a comet presents a unique opportunity to study this parameter space, from an asteroid-like to a Mars- and Venus-like interaction. The Rosetta mission and previous fast flybys of comets have together made many new discoveries, but the most important breakthroughs in the understanding of cometary plasmas are yet to come. The Comet Interceptor mission will provide a sample of multi-point measurements at a comet, setting the stage for a multi-spacecraft mission to accompany a comet on its journey through the Solar System. This White Paper, submitted in response to the European Space Agency’s Voyage 2050 call, reviews the present-day knowledge of cometary plasmas, discusses the many questions that remain unanswered, and outlines a multi-spacecraft European Space Agency mission to accompany a comet that will answer these questions by combining both multi-spacecraft observations and a rendezvous mission, and at the same time advance our understanding of fundamental plasma physics and its role in planetary systems.
  •  
11.
  • Heritier, K. L., et al. (författare)
  • Ion composition at comet 67P near perihelion : Rosetta observations and model-based interpretation
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S427-S442
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ion composition in the coma of comet 67P with newly detected ion species over the 28-37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place at low cometocentric distances. Minor neutrals can efficiently capture protons from the ion population, making the protonated version of these neutrals a major ion species. So far, only NH4+ has been reported at comet 67P. However, there are additional neutral species with proton affinities higher than that of water (besides NH3) that have been detected in the coma of comet 67P: CH3OH, HCN, H2CO and H2S. Their protonated versions have all been detected. Statistics showing the number of detections with respect to the number of scans are presented. The effect of the negative spacecraft potential probed by the Rosetta Plasma Consortium/LAngmuir Probe on ion detection is assessed. An ionospheric model has been developed to assess the different ion density profiles and compare them to the ROSINA/DFMS measurements. It is also used to interpret the ROSINA/DFMS observations when different ion species have similar masses, and their respective densities are not high enough to disentangle them using the ROSINA/DFMS high-resolution mode. The different ion species that have been reported in the coma of 67P are summarized and compared with the ions detected at comet 1P/Halley during the Giotto mission.
  •  
12.
  •  
13.
  • Mandt, K. E., et al. (författare)
  • RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S9-S22
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the primary objectives of the Rosetta Plasma Consortium, a suite of five plasma instruments on-board the Rosetta spacecraft, is to observe the formation and evolution of plasma interaction regions at the comet 67P/Churyumov-Gerasimenko (67P/CG). Observations made between 2015 April and 2016 February show that solar wind-cometary plasma interaction boundaries and regions formed around 2015 mid-April and lasted through early 2016 January. At least two regions were observed, separated by an ion-neutral collisionopause boundary. The inner region was located on the nucleus side of the boundary and was characterized by low-energy water-group ions, reduced magnetic field pileup and enhanced electron densities. The outer region was located outside of the boundary and was characterized by reduced electron densities, water-group ions that are accelerated to energies above 100 eV and enhanced magnetic field pileup compared to the inner region. The boundary discussed here is outside of the diamagnetic cavity and shows characteristics similar to observations made on-board the Giotto spacecraft in the ion pileup region at 1P/Halley. We find that the boundary is likely to be related to ion-neutral collisions and that its location is influenced by variability in the neutral density and the solar wind dynamic pressure.
  •  
14.
  • Matteini, L., et al. (författare)
  • Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS) : Magnetic field draping and cometary pick-up ion waves
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter is expected to have flown close to the tail of comet C/2019 Y4 (ATLAS) during the spacecraft’s first perihelion in June 2020. Models predict a possible crossing of the comet tails by the spacecraft at a distance from the Sun of approximately 0.5 AU.Aims. This study is aimed at identifying possible signatures of the interaction of the solar wind plasma with material released by comet ATLAS, including the detection of draped magnetic field as well as the presence of cometary pick-up ions and of ion-scale waves excited by associated instabilities. This encounter provides us with the first opportunity of addressing such dynamics in the inner Heliosphere and improving our understanding of the plasma interaction between comets and the solar wind.Methods. We analysed data from all in situ instruments on board Solar Orbiter and compared their independent measurements in order to identify and characterize the nature of structures and waves observed in the plasma when the encounter was predicted.Results. We identified a magnetic field structure observed at the start of 4 June, associated with a full magnetic reversal, a local deceleration of the flow and large plasma density, and enhanced dust and energetic ions events. The cross-comparison of all these observations support a possible cometary origin for this structure and suggests the presence of magnetic field draping around some low-field and high-density object. Inside and around this large scale structure, several ion-scale wave-forms are detected that are consistent with small-scale waves and structures generated by cometary pick-up ion instabilities.Conclusions. Solar Orbiter measurements are consistent with the crossing through a magnetic and plasma structure of cometary origin embedded in the ambient solar wind. We suggest that this corresponds to the magnetotail of one of the fragments of comet ATLAS or to a portion of the tail that was previously disconnected and advected past the spacecraft by the solar wind.
  •  
15.
  • Beth, Arnaud, et al. (författare)
  • ROSINA ion zoo at Comet 67P
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Rosetta spacecraft escorted Comet 67P/Churyumov-Gerasimenko for 2 yr along its journey through the Solar System between 3.8 and 1.24 au. Thanks to the high resolution mass spectrometer on board Rosetta, the detailed ion composition within a coma has been accurately assessed in situ for the very first time.Aims: Previous cometary missions, such as Giotto, did not have the instrumental capabilities to identify the exact nature of the plasma in a coma because the mass resolution of the spectrometers onboard was too low to separate ion species with similar masses. In contrast, the Double Focusing Mass Spectrometer (DFMS), part of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board Rosetta (ROSINA), with its high mass resolution mode, outperformed all of them, revealing the diversity of cometary ions.Methods: We calibrated and analysed the set of spectra acquired by DFMS in ion mode from October 2014 to April 2016. In particular, we focused on the range from 13–39 u q−1. The high mass resolution of DFMS allows for accurate identifications of ions with quasi-similar masses, separating 13C+ from CH+, for instance.Results: We confirm the presence in situ of predicted cations at comets, such as CHm+ (m = 1−4), HnO+ (n = 1−3), O+, Na+, and several ionised and protonated molecules. Prior to Rosetta, only a fraction of them had been confirmed from Earth-based observations. In addition, we report for the first time the unambiguous presence of a molecular dication in the gas envelope of a Solar System body, namely CO2++.
  •  
16.
  • Heritier, K. L., et al. (författare)
  • Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S118-S129
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov-Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)-Mutual Impedance Probe (MIP) and RPC-LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC-Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC-LAP. We have compared the results of the model to the electron densities measured by RPC-MIP and RPC-LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations.
  •  
17.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
18.
  • Cui, J., et al. (författare)
  • Ion transport in Titan's upper atmosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A06314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
  •  
19.
  • De Keyser, J., et al. (författare)
  • In situ plasma and neutral gas observation time windows during a comet flyby : Application to the Comet Interceptor mission
  • 2024
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • A comet flyby, like the one planned for ESA's Comet Interceptor mission, places stringent requirements on spacecraft resources. To plan the time line of in situ plasma and neutral gas observations during the flyby, the size of the comet magnetosphere and neutral coma must be estimated well. For given solar irradiance and solar wind conditions, comet composition, and neutral gas expansion speed, the size of gas coma and magnetosphere during the flyby can be estimated from the gas production rate and the flyby geometry. Combined with flyby velocity, the time spent in these regions can be inferred and a data acquisition plan can be elaborated for each instrument, compatible with the limited data storage capacity. The sizes of magnetosphere and gas coma are found from a statistical analysis based on the probability distributions of gas production rate, flyby velocity, and solar wind conditions. The size of the magnetosphere as measured by bow shock standoff distance is 105-106 km near 1 au in the unlikely case of a Halley-type target comet, down to a nonexistent bow shock for targets with low activity. This translates into durations up to 103-104 seconds. These estimates can be narrowed down when a target is identified far from the Sun, and even more so as its activity can be predicted more reliably closer to the Sun. Plasma and neutral gas instruments on the Comet Interceptor main spacecraft can monitor the entire flyby by using an adaptive data acquisition strategy in the context of a record-and-playback scenario. For probes released from the main spacecraft, the inter-satellite communication link limits the data return. For a slow flyby of an active comet, the probes may not yet be released during the inbound bow shock crossing.
  •  
20.
  • Eriksson, Anders I., et al. (författare)
  • Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order -10 V. Conclusions. The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.
  •  
21.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
22.
  • Galand, M., et al. (författare)
  • Far-ultraviolet aurora identified at comet 67P/Churyumov-Gerasimenko
  • 2020
  • Ingår i: Nature Astronomy. - : NATURE RESEARCH. - 2397-3366. ; 4:11, s. 1084-1091
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ measurements from the Rosetta spacecraft reveal the presence of atomic emissions close to comet 67P's nucleus. Such emissions are due to dissociative excitation of molecules by the interaction with the solar wind, identifying them as a form of aurora. Having a nucleus darker than charcoal, comets are usually detected from Earth through the emissions from their coma. The coma is an envelope of gas that forms through the sublimation of ices from the nucleus as the comet gets closer to the Sun. In the far-ultraviolet portion of the spectrum, observations of comae have revealed the presence of atomic hydrogen and oxygen emissions. When observed over large spatial scales as seen from Earth, such emissions are dominated by resonance fluorescence pumped by solar radiation. Here, we analyse atomic emissions acquired close to the cometary nucleus by the Rosetta spacecraft and reveal their auroral nature. To identify their origin, we undertake a quantitative multi-instrument analysis of these emissions by combining coincident neutral gas, electron and far-ultraviolet observations. We establish that the atomic emissions detected from Rosetta around comet 67P/Churyumov-Gerasimenko at large heliocentric distances result from the dissociative excitation of cometary molecules by accelerated solar-wind electrons (and not by electrons produced from photo-ionization of cometary molecules). Like the discrete aurorae at Earth and Mars, this cometary aurora is driven by the interaction of the solar wind with the local environment. We also highlight how the oxygen line Oiat wavelength 1,356 A could be used as a tracer of solar-wind electron variability.
  •  
23.
  • Hajra, R., et al. (författare)
  • Impact of a cometary outburst on its ionosphere Rosetta Plasma Consortium observations of the outburst exhibited by comet 67P/Churyumov-Gerasimenko on 19 February 2016
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at similar to 1000 UT on 19 February 2016, characterized by an increase in the coma surface brightness of two orders of magnitude. The Rosetta spacecraft monitored the plasma environment of 67P from a distance of 30 km, orbiting with a relative speed of similar to 0.2 m s(-1). The onset of the outburst was preceded by pre-outburst decreases in neutral gas density at Rosetta, in local plasma density, and in negative spacecraft potential at similar to 0950 UT. In response to the outburst, the neutral density increased by a factor of similar to 1.8 and the local plasma density increased by a factor of similar to 3, driving the spacecraft potential more negative. The energetic electrons (tens of eV) exhibited decreases in the flux of factors of similar to 2 to 9, depending on the energy of the electrons. The local magnetic field exhibited a slight increase in amplitude (similar to 5 nT) and an abrupt rotation (similar to 36.4 degrees) in response to the outburst. A weakening of 10-100 mHz magnetic field fluctuations was also noted during the outburst, suggesting alteration of the origin of the wave activity by the outburst. The plasma and magnetic field effects lasted for about 4 h, from similar to 1000 UT to 1400 UT. The plasma densities are compared with an ionospheric model. This shows that while photoionization is the main source of electrons, electron-impact ionization and a reduction in the ion outflow velocity need to be accounted for in order to explain the plasma density enhancement near the outburst peak.
  •  
24.
  • Henri, P., et al. (författare)
  • Diamagnetic region(s) : structure of the unmagnetized plasma around Comet 67P/CG
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S372-S379
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESA's comet chaser Rosetta has monitored the evolution of the ionized atmosphere of comet 67P/Churyumov-Gerasimenko (67P/CG) and its interaction with the solar wind, during more than 2 yr. Around perihelion, while the cometary outgassing rate was highest, Rosetta crossed hundreds of unmagnetized regions, but did not seem to have crossed a large-scale diamagnetic cavity as anticipated. Using in situ Rosetta observations, we characterize the structure of the unmagnetized plasma found around comet 67P/CG. Plasma density measurements from RPC-MIP are analysed in the unmagnetized regions identified with RPC-MAG. The plasma observations are discussed in the context of the cometary escaping neutral atmosphere, observed by ROSINA/COPS. The plasma density in the different diamagnetic regions crossed by Rosetta ranges from similar to 100 to similar to 1500 cm(-3). They exhibit a remarkably systematic behaviour that essentially depends on the comet activity and the cometary ionosphere expansion. An effective total ionization frequency is obtained from in situ observations during the high outgassing activity phase of comet 67P/CG. Although several diamagnetic regions have been crossed over a large range of distances to the comet nucleus (from 50 to 400 km) and to the Sun (1.25-2.4 au), in situ observations give strong evidence for a single diamagnetic region, located close to the electron exobase. Moreover, the observations are consistent with an unstable contact surface that can locally extend up to about 10 times the electron exobase.
  •  
25.
  • Heritier, K. L., et al. (författare)
  • Plasma source and loss at comet 67P during the Rosetta mission
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft provided us with a unique opportunity to study comet 67P/Churyumov-Gerasimenko (67P) from a close perspective and over a 2-yr time period. Comet 67P is a weakly active comet. It was therefore unexpected to find an active and dynamic ionosphere where the cometary ions were largely dominant over the solar wind ions, even at large heliocentric distances. Aims. Our goal is to understand the different drivers of the cometary ionosphere and assess their variability over time and over the different conditions encountered by the comet during the Rosetta mission. Methods. We used a multi-instrument data-based ionospheric model to compute the total ion number density at the position of Rosetta. In-situ measurements from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the Rosetta Plasma Consortium (RPC)-Ion and Electron Sensor (IES), together with the RPC-LAngmuir Probe instrument (LAP) were used to compute the local ion total number density. The results are compared to the electron densities measured by RPC-Mutual Impedance Probe (MIP) and RPC-LAP. Results. We were able to disentangle the physical processes responsible for the formation of the cometary ions throughout the 2-yr escort phase and we evaluated their respective magnitudes. The main processes are photo-ionization and electron-impact ionization. The latter is a significant source of ionization at large heliocentric distance (>2 au) and was predominant during the last 4 months of the mission. The ionosphere was occasionally subject to singular solar events, temporarily increasing the ambient energetic electron population. Solar photons were the main ionizer near perihelion at 1.3 au from the Sun, during summer 2015.
  •  
26.
  • Ivchenko, Nickolay V., et al. (författare)
  • Observation of O+4P-D-4(0) lines in proton aurora over Svalbard
  • 2004
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 31:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectra of a proton aurora event show lines of O+ P-4-D-4(0) multiplet (4639-4696 Angstrom) enhanced relative to the N(2)(+)1N(0,2) compared to normal electron aurora. Conjugate satellite particle measurements are used as input to electron and proton transport models, to show that p/H precipitation is the dominant source of both the O+ and N(2)(+)1N emissions. The emission cross-section of the multiplet in p collisions with O and O-2 estimated from published work does not explain the observed O+ brightness, suggesting a higher emission cross-section for low energy p impact on O.
  •  
27.
  • Ivchenko, Nickolay V., et al. (författare)
  • Observation of O+ (P-4-D-4(0)) lines in electron aurora over Svalbard
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:8, s. 2805-2817
  • Tidskriftsartikel (refereegranskat)abstract
    • This work reports on observations of O+ lines in aurora over Svalbard, Norway. The Spectrographic Imaging Facility measures auroral spectra in three wavelength intervals(H-beta, N-2(+) 1N(0,2) and N-2(+) 1N(1,3)). The oxygen ion P-4-D-4(0) multiplet (4639-4696 Angstrom) is blended with the N-2(+) 1N(1,3) band. It is found that in electron aurora, the brightness of this multiplet, is on average, about 0.1 of the N-2(+) 1N(0,2) total brightness. A joint optical and incoherent scatter radar study of an electron aurora event shows that the ratio is enhanced when the ionisation in the upper E-layer (140-190 km) is significant with respect to the E-layer peak below 130 km. Rayed arcs were observed on one such occasion, whereas on other occasions the auroral intensity was below the threshold of the imager. A one-dimensional electron transport model is used to estimate the cross section for production of the multiplet in electron collisions, yielding 0.18 x 10(-18) cm(2).
  •  
28.
  • Madanian, H., et al. (författare)
  • Electron dynamics near diamagnetic regions of comet 67P/Churyumov- Gerasimenko
  • 2020
  • Ingår i: Planetary and Space Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0032-0633 .- 1873-5088. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft detected transient and sporadic diamagnetic regions around comet 67P/Churyumov-Gerasimenko. In this paper we present a statistical analysis of bulk and suprathermal electron dynamics, as well as a case study of suprathermal electron pitch angle distributions (PADs) near a diamagnetic region. Bulk electron densities are correlated with the local neutral density and we find a distinct enhancement in electron densities measured over the southern latitudes of the comet. Flux of suprathermal electrons with energies between tens of eV to a couple of hundred eV decreases each time the spacecraft enters a diamagnetic region. We propose a mechanism in which this reduction can be explained by solar wind electrons that are tied to the magnetic field and after having been transported adiabatically in a decaying magnetic field environment, have limited access to the diamagnetic regions. Our analysis shows that suprathermal electron PADs evolve from an almost isotropic outside the diamagnetic cavity to a field-aligned distribution near the boundary. Electron transport becomes chaotic and non-adiabatic when electron gyroradius becomes comparable to the size of the magnetic field line curvature, which determines the upper energy limit of the flux variation. This study is based on Rosetta observations at around 200 km cometocentric distance when the comet was at 1.24 AU from the Sun and during the southern summer cometary season.
  •  
29.
  • Myllys, M., et al. (författare)
  • Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance.Aims: In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission.Methods: The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature.Results: The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance.Conclusions: We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet.
  •  
30.
  • Stephenson, P., et al. (författare)
  • Multi-instrument analysis of far-ultraviolet aurora in the southern hemisphere of comet 67P/Churyumov-Gerasimenko
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to determine whether dissociative excitation of cometary neutrals by electron impact is the major source of far-ultraviolet (FUV) emissions at comet 67P/Churyumov-Gerasimenko in the southern hemisphere at large heliocentric distances, both during quiet conditions and impacts of corotating interaction regions observed in the summer of 2016.Methods. We combined multiple datasets from the Rosetta mission through a multi-instrument analysis to complete the first forward modelling of FUV emissions in the southern hemisphere of comet 67P and compared modelled brightnesses to observations with the Alice FUV imaging spectrograph. We modelled the brightness of OI1356, OI1304, Lyman-β, CI1657, and CII1335 emissions, which are associated with the dissociation products of the four major neutral species in the coma: CO2, H2O, CO, and O2. The suprathermal electron population was probed by the Ion and Electron Sensor of the Rosetta Plasma Consortium and the neutral column density was constrained by several instruments: the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), the Microwave Instrument for the Rosetta Orbiter and the Visual InfraRed Thermal Imaging Spectrometer.Results. The modelled and observed brightnesses of the FUV emission lines agree closely when viewing nadir and dissociative excitation by electron impact is shown to be the dominant source of emissions away from perihelion. The CII1335 emissions are shown to be consistent with the volume mixing ratio of CO derived from ROSINA. When viewing the limb during the impacts of corotating interaction regions, the model reproduces brightnesses of OI1356 and CI1657 well, but resonance scattering in the extended coma may contribute significantly to the observed Lyman-β and OI1304 emissions. The correlation between variations in the suprathermal electron flux and the observed FUV line brightnesses when viewing the comet's limb suggests electrons are accelerated on large scales and that they originate in the solar wind. This means that the FUV emissions are auroral in nature.
  •  
31.
  • Stephenson, P., et al. (författare)
  • The source of electrons at comet 67P
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 525:4, s. 5041-5065
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the origin of electrons in a weakly outgassing comet, using Rosetta mission data and a 3D collisional model of electrons at a comet. We have calculated a new data set of electron-impact ionization (EII) frequency throughout the Rosetta escort phase, with measurements of the Rosetta Plasma Consortium's Ion and Electron Sensor (RPC/IES). The EII frequency is evaluated in 15-min intervals and compared to other Rosetta data sets. EII is the dominant source of electrons at 67P away from perihelion and is highly variable (by up to three orders of magnitude). Around perihelion, EII is much less variable and less efficient than photoionization at Rosetta. Several drivers of the EII frequency are identified, including magnetic field strength and the outgassing rate. Energetic electrons are correlated to the Rosetta-upstream solar wind potential difference, confirming that the ionizing electrons are solar wind electrons accelerated by an ambipolar field. The collisional test particle model incorporates a spherically symmetric, pure water coma and all the relevant electron-neutral collision processes. Electric and magnetic fields are stationary model inputs, and are computed using a fully kinetic, collision-less Particle-in-Cell simulation. Collisional electrons are modelled at outgassing rates of Q = 1026 s-1 and Q = 1.5 × 1027 s-1. Secondary electrons are the dominant population within a weakly outgassing comet. These are produced by collisions of solar wind electrons with the neutral coma. The implications of large ion flow speed estimates at Rosetta, away from perihelion, are discussed in relation to multi-instrument studies and the new results of the EII frequency obtained in this study.
  •  
32.
  • Vigren, Erik, et al. (författare)
  • Effective ion speeds at similar to 200-250 km from comet 67P/Churyumov-Gerasimenko near perihelion
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S142-S148
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2015 August, comet 67P/Churyumov-Gerasimenko, the target comet of the ESA Rosetta mission, reached its perihelion at similar to 1.24 au. Here, we estimate for a three-day period near perihelion, effective ion speeds at distances similar to 200-250 km from the nucleus. We utilize two different methods combining measurements from the Rosetta Plasma Consortium (RPC)/Mutual Impedance Probe with measurements either from the RPC/Langmuir Probe or from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) (the latter method can only be applied to estimate the effective ion drift speed). The obtained ion speeds, typically in the range 2-8 km s(-1), are markedly higher than the expected neutral outflow velocity of similar to 1 km s(-1). This indicates that the ions were de-coupled from the neutrals before reaching the spacecraft location and that they had undergone acceleration along electric fields, not necessarily limited to acceleration along ambipolar electric fields in the radial direction. For the limited time period studied, we see indications that at increasing distances from the nucleus, the fraction of the ions' kinetic energy associated with radial drift motion is decreasing.
  •  
33.
  • Vigren, Erik, et al. (författare)
  • The Evolution of the Electron Number Density in the Coma of Comet 67P at the Location of Rosetta from 2015 November through 2016 March
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 881:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comet ionospheric model assuming the plasma moves radially outward with the same bulk speed as the neutral gas and not being subject to severe reduction through dissociative recombination has previously been tested in a series of case studies associated with the Rosetta mission at comet 67P/Churyumov-Gerasimenko. It has been found that at low activity and within several tens of kilometers from the nucleus such models (which originally were developed for such conditions) generally work well in reproducing observed electron number densities, in particular when plasma production through both photoionization and electron-impact ionization is taken into account. Near perihelion, case studies have, on the contrary, shown that applying similar assumptions overestimates the observed electron number densities at the location of Rosetta. Here we compare Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure sensor-driven model results with Rosetta Plasma Consortium/Mutual Impedance Probe-derived electron number densities for an extended time period (2015 November through 2016 March) during the postperihelion phase with southern summer/spring. We observe a gradual transition from a state when the model grossly overestimates (by more than a factor of 10) the observations to being in reasonable agreement during 2016 March.
  •  
34.
  • Cui, J., et al. (författare)
  • Diurnal variations of Titan's ionosphere
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:6, s. A06310-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of similar to 700 cm(-3) below similar to 1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast'' ion-neutral chemistry and the latter through "slow'' electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.
  •  
35.
  • Cui, J., et al. (författare)
  • The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data
  • 2015
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 120:2, s. 278-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical variation of electron temperature. An approximate energy balance between solar EUV heating and CO2 collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral and electron thermal structures to the apparent width of the main ionospheric layer. Application of the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle (SZA). It also reveals that the characteristic length scale for the change of electron temperature with altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere. Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres.
  •  
36.
  • Galand, M., et al. (författare)
  • Electron temperature of Titan's sunlit ionosphere
  • 2006
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 33:21, s. L21101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Titan's upper atmosphere is ionized by solar radiation and particle bombardment from Saturn's magnetosphere. The induced ionosphere plays a key role in the coupling of Titan's atmosphere with the Kronian environment. It also provides unique signatures for identifying energy sources upon Titan's upper atmosphere. Here we focus on observations from the first, close flyby by the Cassini spacecraft and assess the ionization and electron heating sources in Titan's sunlit ionosphere. We compare CAPS electron spectra with spectra produced by an electron transport model based on the INMS neutral densities and a MHD interaction model. In addition, we compare RPWS electron temperature against the models. The important terms in the electron energy equation include loss through excitation of vibrational states of N-2 and CH4, Coulomb collisions with suprathermal electrons, and thermal conduction. Our analysis highlights the important role of the magnetic field line configuration for aeronomic studies at Titan.
  •  
37.
  •  
38.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
39.
  • Leblanc, F., et al. (författare)
  • Ganymede's atmosphere as constrained by HST/STIS observations
  • 2023
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 399
  • Tidskriftsartikel (refereegranskat)abstract
    • A new analysis of aurora observations of Ganymede's atmosphere on the orbital leading and trailing hemispheres has been recently published by Roth et al. (2021), suggesting that water is its main constituent near noon. Here, we present two additional aurora observations of Ganymede's sub-Jovian and anti-Jovian hemispheres, which suggest a modulation of the atmospheric H2O/O-2 ratio on the moon's orbital period, and analyze the orbital evolution of the atmosphere. For this, we propose a reconstruction of aurora observations based on a physical modelling of the exosphere taking into account its orbital variability (the Exospheric Global Model; Leblanc et al., 2017). The solution described in this paper agrees with Roth et al. (2021) that Ganymede's exosphere should be dominantly composed of water molecules. From Ganymede's position when its leading hemisphere is illuminated to when it is its trailing hemisphere, the column density of O-2 may vary between 4.3 x 10(14) and 3.6 x 10(14) cm(-2) whereas the H2O column density should vary between 5.6 x 10(14) and 1.3 x 10(15) cm(-2). The water content of Ganymede's atmosphere is essentially constrained by its sublimation rate whereas the O-2 component of Ganymede's atmosphere is controlled by the radiolytic yield. The other species, products of the water molecules, vary in a more complex way depending on their sources, either as ejecta from the surface and/or as product of the dissociation of the other atmospheric constituents. Electron impact on H2O and H-2 molecules is shown to likely produce H Lyman-alpha emissions close to Ganymede, in addition to the observed extended Lyman-alpha corona from H resonant scattering. All these conclusions being highly dependent on our capability to accurately model the origins of the observed Ganymede auroral emissions, modelling these emissions remains poorly constrained without an accurate knowledge of the Jovian magnetospheric and Ganymede ionospheric electron populations.
  •  
40.
  • Mandt, K. E., et al. (författare)
  • Influence of collisions on ion dynamics in the inner comae of four comets
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Collisions between cometary neutrals in the inner coma of a comet and cometary ions that have been picked up into the solar wind flow and return to the coma lead to the formation of a broad inner boundary known as a collisionopause. This boundary is produced by a combination of charge transfer and chemical reactions, both of which are important at the location of the collisionopause boundary. Four spacecraft measured ion densities and velocities in the inner region of comets, exploring the part of the coma where an ion-neutral collisionopause boundary is expected to form.Aims: The aims are to determine the dominant physics behind the formation of the ion-neutral collisionopause and to evaluate where this boundary has been observed by spacecraft.Methods: We evaluated observations from three spacecraft at four different comets to determine if a collisionopause boundary was observed based on the reported ion velocities. We compared the measured location of the ion-neutral collisionopause with measurements of the collision cross sections to evaluate whether chemistry or charge exchange are more important at the location where the collisionopause is observed.Results: Based on measurements of the cross sections for charge transfer and for chemical reactions, the boundary observed by Rosetta appears to be the location where chemistry becomes the more probable result of a collision between H2O and H2O+ than charge exchange. Comparisons with ion observations made by Deep Space 1 at 19P/Borrelly and Giotto at 1P/Halley and 26P/Grigg-Skjellerup show that similar boundaries were observed at 19P/Borrelly and 1P/Halley. The ion composition measurements made by Giotto at Halley confirm that chemistry becomes more important inside of this boundary and that electron-ion dissociative recombination is a driver for the reported ion pileup boundary.
  •  
41.
  • Nilsson, Hans, et al. (författare)
  • Birth of a Magnetosphere
  • 2021
  • Ingår i: Magnetospheres in the Solar System. - : John Wiley & Sons. ; , s. 427-440, s. 427-439
  • Bokkapitel (refereegranskat)abstract
    • A magnetosphere may form around an object in a stellar wind either due to the intrinsic magnetic field of the object or stellar wind interaction with the ionosphere of the object. Comets represent the most variable magnetospheres in our solar system, and through the Rosetta mission we have had the chance to study the birth and evolution of a comet magnetosphere as the comet nucleus approached the Sun. We review the birth of the comet magnetosphere as observed at comet 67P Churyumov–Gerasimenko, the formation of plasma boundaries and how the solar wind–atmosphere interaction changes character as the cometary gas cloud and magnetosphere grow in size. Mass loading of the solar wind leads to an asymmetric deflection of the solar wind for low outgassing rates. With increasing activity a solar wind ion cavity forms. Intermittent shock‐like features were also observed. For intermediate outgassing rate a diamagnetic cavity is formed inside the solar wind ion cavity, thus well separated from the solar wind. The cometary plasma was typically very structured and variable. The region of the coma dense enough to have significant collisions forms a special region with different ion chemistry and plasma dynamics as compared to the outer collision‐free region.  
  •  
42.
  • Pinhassi, Jarone, et al. (författare)
  • Functional responses of key marine bacteria to environmental change - toward genetic counselling for coastal waters
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bacteria are overlooked both as mediators and indicators of ecosystem health, mainly due to methodological limitations in assessing bacterial ecosystem functions. However, these limitations are largely overcome by the advances in molecular biology and bioinformatics methods for characterizing the genetics that underlie functional traits of key bacterial populations - "key" in providing important ecosystem services, being abundant, or by possessing high metabolic rates. It is therefore timely to analyze and define the functional responses of bacteria to human-induced effects on coastal ecosystem health. We posit that categorizing the responses of key marine bacterial populations to changes in environmental conditions through modern microbial oceanography methods will allow establishing the nascent field of genetic counselling for our coastal waters. This requires systematic field studies of linkages between functional traits of key bacterial populations and their ecosystem functions in coastal seas, complemented with systematic experimental analyses of the responses to different stressors. Research and training in environmental management along with dissemination of results and dialogue with societal actors are equally important to ensure the role of bacteria is understood as fundamentally important for coastal ecosystems. Using the responses of microorganisms as a tool to develop genetic counselling for coastal ecosystems can ultimately allow for integrating bacteria as indicators of environmental change.
  •  
43.
  • Sagnieres, Luc B. M., et al. (författare)
  • Influence of local ionization on ionospheric densities in Titan's upper atmosphere
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:7, s. 5899-5921
  • Tidskriftsartikel (refereegranskat)abstract
    • Titan has the most chemically complex ionosphere of the solar system. The main sources of ions on the dayside are ionization by EUV solar radiation and on the nightside include ionization by precipitated electrons from Saturn's magnetosphere and transport of ions from the dayside, but many questions remain open. How well do models predict local ionization rates? How strongly do the ionization processes drive the ionospheric densities locally? To address these questions, we have carried out an analysis of ion densities from the Ion and Neutral Mass Spectrometer (INMS) from 16 close flybys of Titan's upper atmosphere. Using a simple chemical model applied to the INMS data set, we have calculated the ion production rates and local ionization frequencies associated with primary ions and . We find that on the dayside the solar energy deposition model overestimates the INMS-derived production rates by a factor of 2. On the nightside, however, the model driven by suprathermal electron intensities from the Cassini Plasma Spectrometer Electron Spectrometer sometimes agrees and other times underestimates the INMS-derived production rates by a factor of up to 2-3. We find that below 1200km, all ion number densities correlate with the local ionization frequency, although the correlation is significantly stronger for short-lived ions than long-lived ions. Furthermore, we find that, for a given N-2 local ionization frequency, has higher densities on the dayside than on the nightside. We explain that this is due to CH4 being more efficiently ionized by solar photons than by magnetospheric electrons for a given amount of N-2 ionization.
  •  
44.
  • Vigren, E., et al. (författare)
  • INCREASING POSITIVE ION NUMBER DENSITIES BELOW THE PEAK OF ION-ELECTRON PAIR PRODUCTION IN TITAN'S IONOSPHERE
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 786:1, s. 69-
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anion neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.
  •  
45.
  • Vigren, Erik, et al. (författare)
  • Ionization balance in Titan's nightside ionosphere
  • 2015
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 248, s. 539-546
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, n(p) = (n(e)n(1))(1/2) (n(e) and n(1) being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The n(p) model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N-2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to tip and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere. (C) 2014 Elsevier Inc. All rights reserved.
  •  
46.
  • Vigren, Erik, et al. (författare)
  • Model-Observation Comparisons Of Electron Number Densities In The Coma Of 67P/Churyumov-Gerasimenko During 2015 January
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:3
  • Tidskriftsartikel (refereegranskat)abstract
    • During 2015 January 9-11, at a heliocentric distance of similar to 2.58-2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of similar to 28 km from the nucleus of comet 67P/Churyumov-Gerasimenko, sweeping the terminator at northern latitudes of 43 degrees N-58 degrees N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.
  •  
47.
  • Vigren, Erik, et al. (författare)
  • On The Electron-To-Neutral Number Density Ratio In The Coma Of Comet 67P/Churyumov-Gerasimenko : Guiding Expression And Sources For Deviations
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 812:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We compute partial photoionization frequencies of H2O, CO2, and CO, the major molecules in the coma of comet 67P/Churyumov-Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values are computed from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment solar EUV spectra for 2014 August 1, 2015 March 1, and for perihelion (2015 August, as based on prediction). From the varying total photoionization frequency of H2O, as computed from 2014 August 1 to 2015 May 20, we derive a simple analytical expression for the electron-to-neutral number density ratio as a function of cometocentric. and heliocentric distance. The underlying model assumes radial movement of the coma constituents and does not account for chemical loss or the presence of electric fields. We discuss various effects/processes that can cause deviations between values from the analytical expression and actual electron-to-neutral number density ratios. The analytical expression is thus not strictly meant as predicting the actual electron-to-neutral number density ratio, but is useful in comparisons with observations as an indicator of processes at play in the cometary coma.
  •  
48.
  • Vigren, Erik, et al. (författare)
  • On the Possibility of Significant Electron Depletion Due to Nanograin Charging in the Coma of Comet 67P/Churyumov-Gerasimenko Near Perihelion
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We approach the complicated phenomena of gas-dust interactions in a cometary ionosphere, focusing in particular on the possibility of significant depletion in electron number density due to grain charging. Our one-dimensional ionospheric model, accounting for grain charging processes, is applied to the subsolar direction and the diamagnetic cavity of 67P/Churyuomov-Gerasimenko, the target comet for the ESA Rosetta mission, at perihelion (similar to 1.25-1.30 AU). We argue on the one hand that grains with radii >100 nm are unlikely to significantly affect the overall ionospheric particle balance within this environment, at least for cometocentric distances >10 km. On the other hand, if nanograins with radii in the 1-3 nm range are ejected to the coma at a level of similar to 1% with respect to the mass of the sublimated gas, a significant electron depletion is expected up to cometocentric distances of several tens of kilometers. We relate these results to the recent Cassini discoveries of very pronounced electron depletion compared with the positive ion population in the plume of Enceladus, which has been attributed to nanograin charging.
  •  
49.
  • Vigren, E., et al. (författare)
  • On the thermal electron balance in Titan's sunlit upper atmosphere
  • 2013
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 223:1, s. 234-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini mission has investigated Titan's upper atmosphere in detail and found that, under solar irradiation, it has a well-developed ionosphere, which peaks between 1000 and 1200km. In this paper we focus on the T40, T41, T42 and T48 Titan flybys by the Cassini spacecraft and use in situ measurements of N2 and CH4 densities by the Ion Neutral Mass Spectrometer (INMS) as input into a solar energy deposition model to determine electron production rates. We combine these electron production rates with estimates of the effective recombination coefficient based on available laboratory data for Titan ions' dissociative recombination rates and electron temperatures derived from the Langmuir probe (LP) to predict electron number densities in Titan's upper atmosphere, assuming photochemical equilibrium and loss of electrons exclusively through dissociative recombination with molecular ions. We then compare these predicted electron number densities with those observed in Titan's upper atmosphere by the LP. The assumption of photochemical equilibrium is supported by a reasonable agreement between the altitudes where the electron densities are observed to peak and where the electron production rates are calculated to peak (roughly corresponding to the unit optical depth for HeII photons at 30.38nm). We find, however, that the predicted electron number densities are nearly a factor of two higher than those observed throughout the altitude range between 1050 and 1200km (where we have made estimates of the effective recombination coefficient). There are different possible reasons for this discrepancy; one possibility is that there may be important loss processes of free electrons other than dissociative recombination in Titan's upper atmosphere.
  •  
50.
  • Vigren, Erik, et al. (författare)
  • Suprathermal Electrons In Titan's Sunlit Ionosphere : Model-Observation Comparisons
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 826:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N-2 and CH4. We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma Spectrometer/Electron Spectrometer (CAPS/ELS) in Titan's sunlit ionosphere (altitudes of 970-1250 km) focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and extrapolated to Saturn. Associated electron-impact electron production rates have been derived from ambient number densities of N-2 and CH4 (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode) and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of 60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values typically by factors of similar to 3 +/- 1. This finding is possibly related to current difficulties in accurately reproducing the observed electron number densities in Titan's dayside ionosphere. We compare the utilized dayside CAPS/ELS spectra with ones measured in Titan's nightside ionosphere during the T55-T59 flybys. The investigated nightside locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the nightside.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 53

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy