SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gall Dan 1981) "

Sökning: WFRF:(Gall Dan 1981)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allgurén, Thomas, 1986, et al. (författare)
  • The Influence of Alkali, Chlorine and Sulfur on Aerosol Formation
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The use of low-quality fuels in power generation is typically motivated by a potential reduction in fuel costs or CO2 emissions, the latter in case the fuel is based on biomass. These features make low quality fuels attractive at the same time as such fuels are usually problematic to use in power generation due to fuel composition. One of the main issues is deposition of aerosols upon heating surfaces reducing heat transfer and causing high-temperature corrosion (HTC). The later most often related to alkali chlorides, and these are formed from alkali species and chlorine when released during the combustion process. The present work aims to investigate how the gas phase chemistry are connected to the formation aerosols and their characteristics. This is an ongoing work why only part of the preliminary results is presented focusing on the interaction between alkali, sulfur and chlorine in the gas phase. The results presented here indicate a clear correlation between the S/Cl ratio and the formation of alkali sulfates over chlorides. It is also indicated that the local conditions at which the species are released and available in the gas phase is important for the resulting formation of alkali sulfates.
  •  
2.
  • Draper, Teri, et al. (författare)
  • A comparison of industrial-scale (471 MWe) radiometer heat flux measurements between pulverized-coal and 85% coal/15% biomass co-firing combustion
  • 2021
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This work evaluates and compares radiative heat transfer measurements conducted at the 471 MWe Hunter Powerplant Unit 3 utility boiler in Utah, USA, during commercial operation with coal and during tests with co-firing of coal and biomass. The coal used was a Utah sourced bituminous coal, which was mixed with 15 wt% of torrefied wood in the co-firing test. The measurements were gathered using two different narrow angle radiometers and one ellipsoidal radiometer to measure the radiative heat flux. Data were gathered at several floors through port openings in the boiler wall and the samplings were spread out over several hours. Additionally, the gas temperature was measured at positions close to the inner walls of the different floors. Overall, the measured heat fluxes decreased with increasing boiler floor level, and while the measurement data spread is rather high for each measurement, the data spreads for both fuel conditions significantly overlap each other, indicating that it is likely the heat flux profile remains unchanged when running either type of fuel.
  •  
3.
  • Gall, Dan, 1981, et al. (författare)
  • Alkali Monitoring of Industrial Process Gas by Surface Ionization─Calibration, Assessment, and Comparison to in Situ Laser Diagnostics
  • 2021
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 35:24, s. 20160-20171
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present rigorous calibration and assessment of a surface ionization detector (SID) for alkali monitoring in industrial process gases and compare it to an in situ laser diagnostic method called collinear photofragmentation and atomic absorption spectroscopy (CPFAAS). The side-by-side comparison of the time-resolved alkali concentration was performed in a technical-scale gas burner seeded with selected alkali salts, corresponding to alkali molar fractions of 10-100 ppm in the flue gas. The SID operates at room temperature and relies on extraction, dilution, and conditioning of the sample gas, whereas CPFAAS provides in situ molecular data. During KCl addition, the instruments were in good agreement: 80.1 ppm (SID) and 88.5 ppm (CPFAAS). In addition to the field measurements, internal validation of SID performance parameters (flow, electric field strength, and filament temperature) and external parameters (particle size and salt composition) was performed. The difference in sensitivity toward different alkali salts was found to be considerable, which limits the quantitative assessment for a sample gas of unknown composition. The results demonstrate the capability and limitations of the SID and show that a SID can satisfactory monitor KCl levels in a process gas over several days of continuous measurements. However, for heterogeneous fuels with deficient characterization of the gas composition, the obtained SID signal is difficult to interpret without supportive diagnostics. The generic ability of the SID to detect Na and K in both gas and particle phases makes it a valuable complement to alkali diagnostics, such as spectroscopic techniques.
  •  
4.
  • Gall, Dan, 1981, et al. (författare)
  • Recirculation of NO x and SO x Scrubber Effluent to an Industrial Grate Fired MSW Boiler-Influence on Combustion Performance, Deposition Behavior, and Flue Gas Composition
  • 2022
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 36:11, s. 5868-5877
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of scrubber effluent recirculation has recently received attention in connection to NOxemission control. Here, we present data from an industrial-scale MSW-fired plant, where effluent from a combined NOxand SOxscrubber was recirculated and injected into a grate-fired boiler. The combustion characteristics were carefully studied during the injections to observe the potential effects on burnout and flue gas composition. In addition, deposition measurements were performed to observe effects on growth rate and chemical composition of deposits, which are critical factors for any solid fuel-fired heat and power plant. The recirculation of the nitrogen-rich waste streams was performed via pre-existing liquid injection equipment, and the results show that the N-containing compounds in the scrubber effluent were efficaciously reduced to inert nitrogen gas. Furthermore, the recirculation of the scrubber effluent may reduce ammonia demand for selective non-catalytic reduction systems by inhibiting the formation of ammonium chloride. Sulfur and alkali components in the effluent increased the deposition growth rate and also changed the chemical composition of the deposits. Understanding how the local conditions at the injection point influence the distribution and speciation of the injected compounds is essential for a successful recirculation strategy.
  •  
5.
  • Gogolev, Ivan, 1984, et al. (författare)
  • Chemical-looping combustion in a 100 kW unit using a mixture of synthetic and natural oxygen carriers - Operational results and fate of biomass fuel alkali
  • 2019
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 88, s. 371-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass fuel use in chemical looping combustion enables negative CO2 emissions through BECCS (Bio-Energy Carbon Capture and Storage). Effective biomass utilization in CLC requires an economical and effective oxygen carrier to achieve high fuel conversion, effective CO2 capture, and management of the harmful effects of biomass alkali release (bed agglomeration, oxygen carrier deactivation, fouling and corrosion). These issues were addressed in 100 kW CLC pilot experiments. Building on previous work, a mixture of a synthetic calcium manganite perovskite and natural ilmenite was used as the oxygen carrier. Four biomass fuels of varied alkali content were tested: black pellets of steam-exploded stem wood (BP), BP impregnated with K2CO3, a mixture of 50% BP with 50% straw pellets, and wood char. Experiments showed high fuel conversion and very high CO2 capture, with overall performance exceeding that of ilmenite and manganese ore. More than 95% gas conversion was achieved with black pellets at around 950 degrees C. The fate of biomass alkali, previously virtually unknown in CLC research, was explored by implementing online surface-ionization-based measurement of alkali released in the flue gases of the fuel reactor (FR) and air reactor (AR). Release levels were found to correlate with the fuel alkali content. The flue gas measurements and bed material elemental analyses suggest that most of the fuel alkali are accumulated in the oxygen carrier. Unexpectedly, it was found that flue gas alkali release occurs in both the FR and AR, with AR exhibiting an equal or higher rate of release vs. the FR.
  •  
6.
  •  
7.
  • Viljanen, Jan, 1990, et al. (författare)
  • Detection of alkali path in a pilot-scale combustor using laser spectroscopy and surface ionization — From vapor to particles
  • 2023
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361. ; 343
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali species have been under intensive research in thermal conversion applications due to their abundance especially in biomass fuels. Alkali metals, sodium (Na) and potassium (K), are known to cause severe operational problems in combustion units, such as slagging, fouling, and corrosion. In this work, we present a monitoring method to follow alkali behavior from vapor to particles in a pilot-scale reactor. In our approach we combine Tunable Diode Laser Atomic Spectroscopy (TDLAS) for atomic potassium monitoring, Collinear Photofragmentation and Atomic Absorption Spectroscopy (CPFAAS) for KCl and KOH detection, and Surface Ionization Detection (SID) for monitoring of total flue gas and aerosol alkali content. Experiments were carried out in the Chalmers 100 kW oxy-fuel combustion unit that, during these experiments, used propane as fuel. Alkali species were injected as a water solution directly to the flame. In addition, SO2 was used to alter the conditions for alkali species formation injecting it directly to the combustion feed gas. Due to the alkali monitoring system described, we were able to monitor the alkali behavior during nucleation and sulfation processes. The conditions for dimer formation and heterogeneous nucleation were observed when the temperature conditions were changed by lowering the thermal input to the unit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy