SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galmán Andrea) "

Sökning: WFRF:(Galmán Andrea)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Moreira, Xoaquín, et al. (författare)
  • Effects of latitude and conspecific plant density on insect leaf herbivory in oak saplings and seedlings
  • 2021
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 108:1, s. 172-176
  • Tidskriftsartikel (refereegranskat)abstract
    • PremiseAbiotic factors and plant species traits have been shown to drive latitudinal gradients in herbivory, and yet, population‐level factors have been largely overlooked within this context. One such factor is plant density, which may influence the strength of herbivory and may vary with latitude.MethodsWe measured insect herbivory and conspecific plant density (CPD) of oak (Quercus robur) seedlings and saplings along a 17° latitudinal gradient (2700 km) to test whether herbivory exhibited a latitudinal gradient, whether herbivory was associated with CPD, and whether such an association changed with latitude.ResultsWe found a positive but saturating association between latitude and leaf herbivory. Furthermore, we found no significant relationship between CPD and herbivory, and such lack of density effects remained consistent throughout the sampled latitudinal gradient.ConclusionsDespite the apparently negligible influence of plant density on herbivory for Q. robur, further research with other plant taxa and in different types of plant communities are needed to investigate density‐dependent processes shaping geographical variation in plant–herbivore interactions.
  •  
2.
  • Moreira, Xoaquin, et al. (författare)
  • Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species
  • 2020
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 125:6, s. 881-890
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits. Methods Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20 degrees latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. Key Results We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. Conclusions These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.
  •  
3.
  • Valdés-Correcher, Elena, et al. (författare)
  • Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild
  • 2022
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that—just like in non-urban areas—plant–herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy