SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gamstedt Kristofer) "

Sökning: WFRF:(Gamstedt Kristofer)

  • Resultat 1-50 av 220
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afshar, Reza, et al. (författare)
  • A full-scale finite-element model of the Vasa ship
  • 2017
  • Ingår i: Proceedings of ECCOMAS Thematic Conference CompWood 2017.
  • Konferensbidrag (refereegranskat)abstract
    • A full-scale model of the 17th century Vasa shipwreck has been developed to assess its current and future structural stability as well as design an improved support structure. A wireframe model, consisting of only lines, points and curves to describe the geometry of the ship, has been provided by the Vasa museum. It has been developed based on geodetic measurements using a total station. From this wireframe model, a three-dimensional (3D) model comprising solid bodies for solid-like parts (i.e. hull and keel), surfaces for the shell-like components (deck planks) and lines for beam-like constituents (deck beams) has been developed in Creo Parametric 3D software. This geometric model has been imported in finite-element software, Ansys, for further development of the stiffeners (knees, riders, stanchions, masts, etc.), adjustment of the correct location of deck beams and, finally, structural analyses of the entire ship (Figure 1). The procedure for selection of the different types of elements in the finite-element (FE) model, the definition of orthotropic material properties for the timber structure and preliminary results are discussed in this paper. Experiences drawn from this engineering project may also be useful in development of finite element models for structural assessment of other complex wooden structures in cultural heritage.
  •  
2.
  • Afshar, Reza, et al. (författare)
  • Characterization of mechanical properties of Vasa oak and their application in a full-scale numerical model for support assessment
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The 17th century Vasa shipwreck is a well-known object of cultural heritage. According to geodetic measurements inside and outside of the ship as well as on the support structure, the ship is sinking onto its cradle. The analysis of measurements showed the ship undergoes continued deformation with increasing strain. Previous research projects on the Vasa ship have largely been focused on the chemical degradation of the Vasa oak, which concerns the waterlogged polyethylene glycol (PEG) impregnated oak wood. The main goal was to provide understanding of the degradation mechanisms and possible remedies to mitigate the chemical decay. In this paper, a review is presented of previous research in term of characterization of mechanical properties, and effects of PEG and moisture on the mechanical behaviour of the Vasa oak. In addition, a full-scale finite-element model of the Vasa ship has been developed to assess its current and future structural behaviour, as well as a tool to design an improved support structure. The mechanical properties, defined in the model in terms of orthotropic elastic engineering constants, have been determined in previous work. Moreover, creep properties of the archaeological wood material have been and are being characterized, so that the model can be extended by extrapolation to predict future deformation. Geodetic measurements have been used for validation of the static model. The approach undertaken in this project could hopefully be useful in design strategies of improved support for other aging and deforming wood structures in cultural heritage.
  •  
3.
  • Afshar, R, et al. (författare)
  • Comparison of experimental testing and finite element modelling of a replica of a section of the Vasa warship to identify the behaviour of structural joints
  • 2017
  • Ingår i: Engineering structures. - : ELSEVIER SCI LTD. - 0141-0296 .- 1873-7323. ; 147, s. 62-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Modelling in design of new support systems necessitates the joint stiffness of the existing wooden structures. In valuable structures, e.g. in cultural heritage, or structures with inaccessible joints, these stiffness values must be estimated, e.g. by testing joints in tailored replicas of the original parts. Although a simplified structure, the replica, can call for finite element (FE) modelling to capture the stiffness parameters. The first step in such a process is to compare FE predictions with experimental tests, for validation purposes. The reasons for unavoidable differences in load-displacement behaviour between model predictions and experimental test should be identified, and then possibly remedied by an improved model. Underlying causes like the complex shape of joints, geometrical uncertainties, contact mechanisms and material nonlinearity are generally too computationally expensive to be included in a full-scale model. It is therefore convenient to collect such effects in the contact penalty stiffness in the joint contact areas where stresses are high, which influences the resulting joint stiffness. A procedure for this is here illustrated for the case of the 17th century Vasa shipwreck A replica of a section of the ship has been constructed, and its joints were tested in bending-compression, in-plane shear and rotation. The FE simulations showed stiffer behaviour than the experimental results. Therefore, a normal penalty stiffness in contact surfaces of the joint were introduced, and used as a calibration parameter to account for the simplifying assumptions or indeliberate imprecision in the model, e.g. concerning boundary conditions, material properties and geometrical detail. The difference between numerical predictions and experimental results could then be significantly reduced, with a suitable normal penalty stiffness value. Once an acceptable finite element model has been obtained, it is shown how this can be used to identify stiffness values for joints in the physical structure with compensation for degradation of material properties due to aging and conservation treatment.
  •  
4.
  • Afshar, Reza, et al. (författare)
  • Creep in oak material from the Vasa ship: : verification of linear viscoelasticity and identification of stress thresholds
  • 2020
  • Ingår i: European Journal of Wood and Wood Products. - : Springer Nature. - 0018-3768 .- 1436-736X. ; 78:6, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Creep deformation is a general problem for large wooden structures, and in particular for shipwrecks in museums. In this study, experimental creep data on the wooden cubic samples from the Vasa ship have been analysed to confrm the linearity of the viscoelastic response in the directions where creep was detectable (T and R directions). Isochronous stress–strain curves were derived for relevant uniaxial compressive stresses within reasonable time spans. These curves and the associated creep compliance values justify that it is reasonable to assume a linear viscoelastic behaviour within the tested ranges, given the high degree of general variability. Furthermore, the creep curves were ftted with a one-dimensional standard linear solid model, and although the rheological parameters show a fair amount of scatter, they are candidates as input parameters in a numerical model to predict creep deformations. The isochronous stress–strain relationships were used to defne a creep threshold stress below which only negligible creep is expected. These thresholds ranges were 0.3–0.5 MPa in the R direction and 0.05–0.2 MPa in the T direction.
  •  
5.
  •  
6.
  • Agde Tjernlund, Jessica, et al. (författare)
  • Influence of molecular weight on strain-gradient yielding in polystyrene
  • 2004
  • Ingår i: Polymer Engineering and Science. - : Wiley. - 0032-3888 .- 1548-2634. ; 44:10, s. 1987-1997
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental observations have indicated that the presence of strain gradients has an influence on the inelastic behavior of polymers as well as in other materials such as ceramics and metals. The present study has experimentally quantified length-scale effects in inelastic deformations of the polymer material polystyrene (PS) with respect to the molecular length. The experimental technique that has been used is nano-indentation to various depths with a Berkovich indenter. The hardness has been calculated with the method by Oliver and Pharr, and also by direct measurements of the area from atomic force microscopy. The experiments showed that the length-scale effects in inelastic deformations exist in polystyrene at ambient conditions. The direct method gave a smaller hardness than the Oliver-Pharr method. It was also shown that the length-scale parameter according to Nix and Gao increases with increasing molecular weight. For high molecular weights above a critical value of entanglement, there was no pertinent increase in the length-scale parameter. The length-scale parameter for strain-gradient plasticity has a size of around 0.1 μm for polystyrene.
  •  
7.
  •  
8.
  • Agde Tjernlund, Jessica, et al. (författare)
  • Length-scale effects on damage development in tensile loading of glass-sphere filled epoxy
  • 2006
  • Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683 .- 1879-2146. ; 43:24, s. 7337-7357
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle-reinforced polymers are widely used in load-carrying applications. The effect of particle size on damage development in the polymer is still relatively unexplored. In this study, the effect of glass-sphere size on the damage development in tensile loaded epoxy has been investigated. The diameter of the glass spheres ranged from approximately 0.5-50 mu m. The first type of damage observed was debonding at the sphere poles, which subsequently grew along the interface between the glass spheres and epoxy matrix. These cracks were observed to kink out into the matrix in the radial direction perpendicular to the applied load. The debonding stresses increased with decreasing sphere diameter, whereas the length to diameter ratio of the resulting matrix cracks increased with increasing sphere diameter. These effects could not be explained by elastic stress analysis and linear-elastic fracture mechanics. Possible explanations are that a thin interphase shell may form in the epoxy close to the glass spheres, and that there is a length-scale effect in the yield process which depends on the strain gradients. Cohesive fracture processes can contribute to the influence of sphere size on matrix-crack length. Better knowledge on these underlying size-dependent mechanisms that control damage development in polymers and polymer composites is useful in development of stronger materials. From a methodology point of view, the glass-sphere composite test can be used as an alternative technique (although still in a qualitative way) to hardness vs. indentation depth to quantify length-scale effects in inelastic deformation of polymers.
  •  
9.
  • Almgren, Karin M., et al. (författare)
  • Characterization of interfacial stress transfer ability by dynamic mechanical analysis of cellulose fiber based composite materials
  • 2010
  • Ingår i: Composite interfaces (Print). - 0927-6440 .- 1568-5543. ; 17:9, s. 845-861
  • Tidskriftsartikel (refereegranskat)abstract
    • The stress transfer ability at the fiber-matrix interface of wood fiber composites is known to affect the mechanical properties of the composite. The evaluation of interface properties at the level of individual fibers is however difficult due to the small dimensions and variability of the fibers. The dynamical mechanical properties of composite and constituents, in this case wood fibers and polylactide matrix, was here used together with micromechanical modeling to quantify the stress transfer efficiency at the fiber-matrix interface. To illustrate the methodology, a parameter quantifying the degree of imperfection at the interface was identified by inverse modeling using a micromechanical viscoelastic general self-consistent model with an imperfect interface together with laminate analogy on the composite level. The effect of moisture was assessed by comparison with experimental data from dynamic mechanical analysis in dry and moist state. For the wood fiber reinforced polylactide, the model shows that moisture absorption led to softening and mechanical dissipation in the hydrophilic wood fibers and biothermoplastic matrix, rather than loss of interfacial stress transfer ability.
  •  
10.
  • Almgren, Karin M., et al. (författare)
  • Contribution of wood fiber hygroexpansion to moisture induced thickness swelling of composite plates
  • 2010
  • Ingår i: Polymer Composites. - : Wiley. - 0272-8397 .- 1548-0569. ; 31:5, s. 762-771
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the main drawbacks of wood fiber-based composite materials is their propensity to swell due to moisture uptake. Because the wood fibers are usually the main contributor to hygroexpansion, it is of interest to quantify the hygroexpansion coefficient of wood fibers, to compare and rank different types of fibers. This investigation outlines an inverse method to estimate the transverse hygroexpansion coefficient of wood fibers based on measurements of moisture induced thickness swelling of composite plates. The model is based on composite micromechanics and laminate theory. Thickness swelling has been measured on polylactide matrix composites with either bleached reference fibers or crosslinked fibers. The crosslinking modification reduced the transverse hygroexpansion of the composites and the transverse coefficient of hygroexpansion of the fibers was reduced from 0.28 strain per relative humidity for reference fibers to 0.12 for cross-linked fibers
  •  
11.
  • Almgren, Karin M., et al. (författare)
  • Effects of Moisture on Dynamic Mechanical Properties of Wood Fiber Composites Studied by Dynamic FT-IR Spectroscopy
  • 2008
  • Ingår i: Journal of reinforced plastics and composites (Print). - : SAGE Publications. - 0731-6844 .- 1530-7964. ; 27:16-17, s. 1709-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood fiber reinforced polylactide is a biodegradable composite where both fibers and matrix are from renewable resources. In the development of such new materials, information on mechanical behavior on the macroscopic and the molecular level is useful. In this study, dynamic Fourier transform infrared (FT-IR) spectroscopy is used to measure losses at the molecular level during cyclic tensile loading for bonds that are characteristic of the cellulosic fibers and the polylactid matrix. This molecular behavior is compared with measured macroscopic hysteresis losses for different moisture levels. The results show that moisture ingress will transfer the load from the fibers to the matrix, and that a more efficient fiber-matrix interface would diminish mechanical losses. Although the dynamic FT-IR spectroscopy method is still qualitative, this investigation shows that it can provide information on the stress transfer of the constituents in wood fiber reinforced plastics.
  •  
12.
  • Almgren, Karin M., et al. (författare)
  • Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials
  • 2009
  • Ingår i: Polymer Composites. - : Wiley. - 0272-8397 .- 1548-0569. ; 30:12, s. 1809-1816
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of butantetracarboxylic acid (BTCA) modification, choice of matrix, and fiber volume fraction on hygroexpansion of wood fiber composites have been investigated. Untreated reference wood fibers and BTCA-modified fibers were used as reinforcement in composites with matrices composed of polylactic acid (PLA), polypropylene (PP), or a mixture thereof. The crosslinking BTCA modification reduced the out-of-plane hygroexpansion of PLA and PLA/PP composites, under water-immersed and humid conditions, whereas the swelling increased when PP was used as matrix material. This is explained by difficulties for the BTCA-modified fibers to adhere to the PP matrix. Fiber volume fraction was the most important parameter as regards out-of-plane hygroexpansion, with a high-fiber fraction leading to large hygroexpansion. Fiber-matrix wettability during processing and consolidation also showed to have a large impact on the dimensional stability and moisture uptake. POLYM. COMPOS., 30:1809-1816, 2009.
  •  
13.
  • Almgren, Karin M., 1980- (författare)
  • Wood-fibre composites : Stress transfer and hygroexpansion
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wood fibres is a type of natural fibres suitable for composite applications. The abundance of wood in Swedish forests makes wood-fibre composites a new and interesting application for the Swedish pulp and paper industry. For large scale production of composites reinforced by wood fibres to be realized, the mechanical properties of the materials have to be optimized. Furthermore, the negative effects of moisture, such as softening, creep and degradation, have to be limited. A better understanding of how design parameters such as choice of fibres and matrix material, fibre modifications and fibre orientation distribution affect the properties of the resulting composite material would help the development of wood-fibre composites. In this thesis, focus has been on the fibre-matrix interface, wood-fibre hygroexpansion and resulting mechanical properties of the composite. The importance of an efficient fibre-matrix interface for composite properties is well known, but the determination of interface properties in wood-fibre composites is difficult due to the miniscule dimensions of the fibres. This is a problem also when hygroexpansion of wood fibres is investigated. Instead of tedious single-fibre tests, more straightforward, macroscopic approaches are suggested. Halpin-Tsai’s micromechanical models and laminate analogy were used to attain efficient interface characteristics of a wood-fibre composite. When Halpin-Tsai’s model was replaced by Hashin’s concentric cylinder assembly model, a value of an interface parameter could be derived from dynamic mechanical analysis. A micromechanical model developed by Hashin was used also to identify the coefficient of hygroexpansion of wood fibres. Measurements of thickness swelling of wood-fibre composites were performed. Back-calculation through laminate analogy and the micromechanical model made it possible to estimate the wood-fibre coefficient of hygroexpansion. Through these back-calculation procedures, information of fibre and interface properties can be gained for ranking of e.g. fibre types and modifications. Dynamic FT-IR (Fourier Transform Infrared) spectroscopy was investigated as a tool for interface characterization at the molecular level. The effects of relative humidity in the test chamber on the IR spectra were studied. The elastic response of the matrix material increased relative to the motion of the reinforcing cellulose backbone. This could be understood as a stress transfer from fibres to matrix when moisture was introduced to the system, e.g. as a consequence of reduced interface efficiency in the moist environment. The method is still qualitative and further development is potentially very useful to measure stress redistribution on the molecular level.
  •  
14.
  • Almgren, Karin, et al. (författare)
  • Role of fibre-fibre and fibre-matrix adhesion in stress transfer in composites made from resin-impregnated paper sheets.
  • 2009
  • Ingår i: International Journal of Adhesion and Adhesives. - : Elsevier BV. - 0143-7496 .- 1879-0127. ; 29:5, s. 551-557
  • Tidskriftsartikel (refereegranskat)abstract
    • Paper-reinforced plastics are gaining increased interest as packaging materials, where mechanical properties are of great importance. Strength and stress transfer in paper sheets are controlled by fibre-fibre bonds. In paper-reinforced plastics, where the sheet is impregnated with a polymer resin, other stress-transfer mechanisms may be more important. The influence of fibre-fibre bonds on the strength of paper-reinforced plastics was therefore investigated. Paper sheets with different degrees of fibre-fibre bonding were manufactured and used as reinforcement in a polymeric matrix. Image analysis tools were used to verify that the difference in the degree of fibre-fibre bonding had been preserved in the composite materials. Strength and stiffness of the composites were experimentally determined and showed no correlation to the degree of fibre-fibre bonding, in contrast to the behaviour of unimpregnated paper sheets. The degree of fibre-fibre bonding is therefore believed to have little importance in this type of material, where stress is mainly transferred through the fibre-matrix interface.
  •  
15.
  •  
16.
  •  
17.
  • Andersson, Rasmus (författare)
  • Evaluation of two hydrocyclone designs for pulp fractionation
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The process conditions and fractionation efficiency of two hydrocyclone designs, a novel and a conventional conical design, were evaluated. The novel design comprised a modified inlet section, where the pulp suspension had to pass a narrow ring-shaped opening, and a very compact fractionation zone. The influence of feed concentration and fine fraction mass ratio was studied. The trials were performed with never-dried, unrefined bleached chemical softwood pulp. Fractionation efficiency was evaluated in terms of change of surface roughness of handsheets made out of the fractions and the feed pulp respectively.The fractionation efficiency increased considerably with decreasing fine fraction mass ratio, especially at higher feed concentrations. This finding prompted a hypothesis on the existence of a radial gradient in the composition of the suspension inside the novel hydrocyclone. Using the novel hydrocyclone in a feed-forward fractionation system would therefore prove to be more favourable as a larger total fine fraction of better properties can be obtained. A three-stage feed-forward fractionation system was evaluated in laboratory scale. Here, it was indeed possible to extract fine fractions with improved surface properties in each of the three consecutive stages. All three fine fractions had about the same surface roughness.The fractionation performance of the novel design was benchmarked against that of a conventional, best available technology (BAT) design. In terms of fractionation efficiency, the BAT design performed better. However, the fractions produced with the novel hydrocyclone had a much smaller difference in concentration, implying a much less pronounced enrichment of fines in the fine fraction. It is unclear, to what extent the lower share of latewood fibres and the increased fines content, respectively, contributed to the improved surface roughness of the fine fractions. However, it is clear that the lower enrichment of fines in the novel hydrocyclone makes it easier to install it in industrial applications without a need for auxiliary equipment to redistribute large water flows. 
  •  
18.
  •  
19.
  • Bader, Thomas K. (författare)
  • Mechanical properties of sound and of deteriorated softwood at different length scales : Poromicromechanical modeling and experimental investigations
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Due to its natural origin and its inherent heterogeneities, mechanical properties of wood are highly anisotropic and show a broad variability, not only between different wood species, but also within a tree. Similar to other biological materials, the wood mi- crostructure is well organized and hierarchically structured from the annual rings visible to the naked eye down to the wood polymers cellulose, hemicellulose, and lignin at the nanometer-scale. This thesis aims at a deeper understanding of the role of different hi- erarchical levels and their corresponding physical and chemical characteristics in relation to mechanical properties of sound wood and of deteriorated wood. This is achieved by means of micromechanical modeling and experimental analyses.This thesis starts with the re-formulation of an existing micromechanical model for the elastic behavior and elastic limit states of wood in the framework of poromechanics. The mechanical role of cell wall water at different hierarchical levels is investigated by means of this model. In a broader sense, the developed model allows to investigate the transition of eigenstresses from the cell wall to the softwood level. Moreover, this poromicromechanical model forms the basis for subsequent consideration of a microscopic failure criterion for lignin for the derivation of softwood failure stresses. The suitability of the modeling approach is underlined by a satisfactory agreement of the model-predicted failure stresses with experimental results of biaxial strength tests on Norway spruce.As a result of partly considerably different microstructural characteristics, Common yew exhibits exceptional mechanical properties compared to other softwood species. The re- lationship between microstructure and stiffness properties of Common yew and Norway spruce is investigated by means of the poromicromechanical model and mechanical tests across various length scales. Moreover, this offers the opportunity of a broader model validation. The influence of differences in microfibril angle of the S2 cell wall layer and in mass density between yew and spruce is found to be more dominant than the influence of differences in the annual ring characteristics.The suitability of the poromicromechanical model to predict changes in mechanical prop- erties upon fungal decay is demonstrated. For this purpose, relationships between mi- crostructure and mechanical properties of deteriorated wood are experimentally explored. Changes in mechanical properties and in the microstructure, measured at pine wood samples after standard wood durability tests using one brown rot fungus (Gloeophyl- lum trabeum) and one white rot fungus (Trametes versicolor), are presented. Transverse stiffnesses are revealed to be more sensitive to degradation than longitudinal stiffness, particularly as a result of pronounced degradation of hemicelluloses. Moreover, ultrason- ically derived anisotropy ratios of elastic stiffnesses allow to identify certain degradation mechanisms of the two considered fungi. The experimental campaign is complemented by micromechanical modeling. For this purpose, the micromechanical model is extended to take into account degradation-specific microstructural characteristics. 
  •  
20.
  • Bengtsson, Rhodel, et al. (författare)
  • A basic orthotropic viscoelastic model for composite and wood materials considering available experimental data and time-dependent Poisson's ratios
  • 2020
  • Ingår i: IOP Conference Series. - : IOP Publishing. - 1757-8981 .- 1757-899X. ; 942
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term deformation in creep is of significant engineering importance. For anisotropic materials, such as wood, composites and reinforced concrete, creep testing in several axial directions including shear is necessary to obtain a creep model which is able to predict deformation in the basic orthotropic case. Such a full set of experimental data is generally not available, and simplifying assumptions are typically made to conceive a useful 3D model. These assumptions should preferably be made based on the material behaviour and sound engineering arguments. This problem appears to be addressed in many different ways and sometimes the assumptions are not well justified. In the present study, we examine 3D creep of wood and composite materials. Particular emphasis is made on explaining the choices made in developing the model, considering practicality, incomplete material data and the specific behaviour of wood and composites. An orthotropic linear viscoelastic model is implemented as a material model in a commercial FE software. The constitutive equations are derived in the 1D case using a hereditary approach, then later generalized to the 3D formulation. Guidelines are shown how to implement it into the FE software to predict creep of components and structures. Although the model itself is conventional, the effect of considering time-dependent Poisson's ratios is investigated here, as well an optimization approach when inserting inevitably asymmetric experimental creep data into the model. As far as the authors know, creep of wooden materials have not been defined using this approach before. The model of interest is calibrated against experimental data. Examples using experimental results from solid wood data and a unidirectional fiber composite are demonstrated. The results show that the model is able to capture the orthotropic behaviour adequately. Orthotropy requires symmetry of the creep compliance matrix, which typically is not the case experimentally. It is shown that in rendering the matrix symmetric, one needs to decide which direction is more important. It is also shown that the frequently employed assumption of constant Poisson's ratios should be made with caution.
  •  
21.
  • Bengtsson, Rhodel, et al. (författare)
  • An applicable orthotropic creep model for wood materials and composites
  • 2022
  • Ingår i: Wood Science and Technology. - : Springer Nature. - 0043-7719 .- 1432-5225. ; 56:6, s. 1585-1604
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the engineering importance of creep of composite materials and other fibrous anisotropic load-carrying materials like wood, there is an apparent lack in useful experimental data in 3D. Proposed creep models are generally not commensurate with realistic data from experimental characterization. In the present study, an orthotropic linear viscoelastic model is presented and examined on its performance of predicting the time-dependent nature of wood and composite materials. The constitutive equations are presented using the hereditary approach. A clear description of the finite element implementation of the material model is given. Since constant Poisson's ratios are a common assumption for viscoelastic composites due to lack of data, this study presents the effects of time-dependent Poisson's ratio in the study. The model is calibrated against inevitably asymmetric experimental creep data using an optimization approach. With time-dependent Poisson's ratios, the results show that the model is able to simultaneously capture the time-dependent behaviour in three material axis of orthotropic materials such as European beech wood and a fibre-reinforced composite. However, a relatively poor match was found when the Poisson's ratios were set to be constant. Thus, the frequently employed assumption of constant Poisson's ratios should be made with caution.
  •  
22.
  • Bengtsson, Rhodel, et al. (författare)
  • Comparison of measured creep in a wooden beam with finite element predictions based on orthotropic viscoelastic material model
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Creep is of concern for long-term deformations of wooden structures. Since wood is anisotropic and creeps in several material directions, it may not be sufficient to include only axial creep along the grain even for deformations in beam-like components. A bottle-neck is that creep characterisation in all material directions is both costly and complicated. Multiscale modelling from cell-wall creep including the main contributing features (density, ray content, microfibrillar angle) can contribute to fill to complete material models for wood creep. In the present study, we have chosen a four-point bending test of a Norway spruce beam to represent a loaded wooden component in a structure.  Digital image correlation was used to gather data on strain and displacement fields during the creep test. The experimental results were compared with finite element predictions based on a 3D orthotropic viscoelastic model obtained by multiscale homogenisation. There was generally good agreement in the strain fields between the finite element simulations and experimental observations. However, the numerical predictions exhibits slightly greater stiffness in terms of displacement, suggesting the need for further refinement of the multiscale model or a combination of materials creep charactrisation and multiscale modelling.
  •  
23.
  • Bengtsson, Rhodel (författare)
  • Creep aspects of softwood from the cell-wall level to structures
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis addresses the intricate mechanical behaviour of natural materials, with a particular focus on wood. Despite millennia of use, understanding the mechanical behaviour of wood materials remains challenging due to their complex microstructures. For instance, they exhibit variations in properties among samples, nonlinear behaviour under elevated loads, and are sensitive to alterations in moisture content.Wood and related natural biobased materials hold immense potential due to their renewability, cost-effectiveness, eco-friendliness, and ease of use in sustainable construction. Wood boasts remarkable stiffness and strength along its primary axis, surpassing many man-made materials in strength-to-weight ratios. However, its anisotropic and heterogeneous nature gives rise to challenges, necessitating the consideration of multiple parameters for accurate characterization to be used in design.Wood is intrinsically heterogeneous, leading to considerable variations in local stresses and deformations during loading. To address these microstructural effects on macroscopically measurable phenomena, mathematical homogenization methods, established since the 1970s, have found applications in material mechanics, including both fibre composites and wood.In recent years, there has been a growing focus on the viscoelastic behaviour of composites and timber structures, given their increased long-term use in load-carrying applications. While numerous investigations have explored the relationship between the microstructure of wood and its elastic properties, few studies have explored the connection between microstructure and viscoelastic properties.The thesis focuses on the static and, more notably, on the time-dependent mechanical properties of wood, bridging the gap from cell-wall creep to structures. It includes experiments and numerical work, culminating in the development of a material model suitable for orthotropic materials like wood. The multiscale model establishes a link between microstructural parameters and macroscopic properties, potentially applicable to various softwood species. Given the lack of shear creep data in the literature, the thesis introduces straightforward methods to characterize shear creep properties, addressing a significant knowledge gap.Furthermore, the thesis progresses from material-level experiments to higher length scales, demonstrating how the results can be applied to larger wooden structures, such as the tower for a counter-rotating axis tilted turbine. While these results require further validation in the absence of experimental data for wooden wind turbine structures, they offer useful insights into simulating creep behaviour in such applications.In conclusion, this thesis highlights the multifaceted nature of a natural material like wood, its mechanical challenges, and the promising research avenues for comprehensive understanding and practical use. The outcome provides contributions to the efficient utilization of wood in load-carrying structures and underlines the importance of ongoing research in this field.
  •  
24.
  • Bengtsson, Rhodel, et al. (författare)
  • Evaluating the viscoelastic shear properties of clear wood via off-axis compression testing and digital-image correlation
  • 2023
  • Ingår i: Mechanics of time-dependant materials. - 1385-2000 .- 1573-2738.
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly anisotropic materials like wood and unidirectional polymer composite structures are sensitive to shear deformations, in particular close to fixed joints. Large wooden structures in buildings and, e.g. wind-turbine blades, are designed to last for decades, and hence are susceptible to unwanted creep deformations. For improved structural design, the shear-creep properties of the material are needed. These are rarely available in the literature, possibly because of technical difficulties to achieve a well-defined shear-stress state in test specimens. For cost-efficient testing, this goal of a pure stress state necessarily needs to be compromised. In the present study, we propose a simple test method based on uniaxial compression on wooden cubes, but is equally applicable for fibre composites. The viscoelastic shear properties of Norway spruce (Picea abies) under off-axis creep compression tests have been characterised in all three directions. The tests are performed in a controlled climate chamber and the creep strains are captured using digital-image correlation.
  •  
25.
  •  
26.
  • Bengtsson, Rhodel, et al. (författare)
  • Feasiblity of wooden towers for offshore wind turbines: Creep and fatigue predictions
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Long-term experiences with vertical axis wind turbines constructed with wood are positive, and show that wood towers are a viable alternative to conventional steel towers on land. Wood is a renewable material in contrast to steel and concrete and could steer a more sustainable use of raw material for future wind farms. The obvious drawback of moisture-induced softening and degradation in off-shore settings can be mitigated by efficiently sealing the tower using a barrier coating. In that case, fatigue sensitivity and creep deformations are the main design concerns. In this paper through finite element simulations of a floating tilted vertical-axis wind turbine, it was shown that fatigue issues can be resolved with proper design of the mast and the blade joints keeping the stress concentrations at bay. The numerical results also indicated that creep displacements are negligible. The review and calculations reinforce the assumption that the fast developments seen in timber high-rise building can also be expected for off-shore wind turbine towers. 
  •  
27.
  •  
28.
  • Bengtsson, Rhodel, et al. (författare)
  • Viscoelastic behavior of softwood based on a multiscale computational homogenization
  • 2023
  • Ingår i: Mechanics of materials. - : Elsevier. - 0167-6636 .- 1872-7743. ; 179
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, a numerical multiscale model is made to show how the hierarchical structure of softwood affect its macroscopic viscoelastic properties. The performance of the model is demonstrated for two softwood species — Norway spruce and Japanese cypress, whose creep behavior has been characterized experimentally. The results show that by using the same transversely isotropic viscous properties of the cell wall for both species, it is possible to predict creep deformation relatively close to experimental creep measurements for both species. Assuming that the variability is larger on the microstructural level (density, cell-wall geometry, microfibril angle, composition of wood tissues) than on the cell-wall level, it is possible to predict the macroscopic creep behavior based on the microstructural parameters alone. Such predictions can potentially save cost and time, since creep characterization in all material directions is demanding.
  •  
29.
  • Bermejo, Daniel, 1985-, et al. (författare)
  • First Aldol-Crosslinked Hyaluronic Acid Hydrogel: Fast and Hydrolytically Stable Gel with Tissue Adhesive Properties
  • Ingår i: Chemical Sciences Journal. - 2150-3494.
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, there are limited approaches to tailor 3D scaffolds crosslinked with a stable covalent C-C bond that does not require any catalysts or initiators. We present here the first hydrogels employing aldol condensation chemistry that exhibit exceptional physicochemical properties. We investigated the aldol-crosslinking chemistry using two types of aldehyde-modified hyaluronic acid (HA) derivatives, namely; an enolizable HA-aldehyde (HA-Eal) and a non-enolizable HA-aldehyde (HA-Nal). Hydrogels formed using HA-Eal demonstrate inferior crosslinking efficiency (due to intramolecular loop formation), when compared with hydrogels formed by mixing HA-Eal and HA-NaI leading to a cross-aldol product. The change in mechanical properties as a result of crosslinking at different pH is determined using rheological measurements and is interpreted in terms of molecular weight between cross-links (Mc). The novel HA cross-aldol hydrogels demonstrate excellent hydrolytic stability and favorable mechanical properties but allow hyaluronidase mediated enzymatic degradation. Interestingly, residual aldehyde functionality within the aldol product leads to adhesion to tissue as demonstrated by bonding two bone tissues. The aldehyde functionality also permits facile post-synthetic modifications with nucleophilic reagents such as Alexa FluorTM 488. Finally, we demonstrate that the novel hydrogel is biocompatible with encapsulated stem cells that show a linear rate of expansion in our 3–6 days of study.
  •  
30.
  • Bermejo-Velasco, Daniel, 1985-, et al. (författare)
  • First Aldol Cross-Linked Hyaluronic Acid Hydrogel : Fast and Hydrolytically Stable Hydrogel with Tissue Adhesive Properties
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:41, s. 38232-38239
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, there are limited approaches to tailor 3D scaffolds cross-linked with a stable covalent C-C bond that does not require any catalysts or initiators. We present here the first hydrogels employing aldol condensation chemistry that exhibit exceptional physicochemical properties. We investigated the aldol-cross-linking chemistry using two types of aldehyde-modified hyaluronic acid (HA) derivatives, namely, an enolizable HA-aldehyde (HA-EaI) and a non-enolizable HA-aldehyde (HA-NaI). Hydrogels formed using HA-EaI demonstrate inferior cross linking efficiency (due to intramolecular loop formation), when compared with hydrogels formed by mixing HA-EaI and HA-NaI leading to a cross-aldol product. The change in mechanical properties as a result of cross-linking at different pH values is determined using rheological measurements and is interpreted in terms of molecular weight between cross-links (Me). The novel HA cross-aldol hydrogel demonstrate excellent hydrolytic stability and favorable mechanical properties but allow hyaluronidase-mediated enzymatic degradation. Interestingly, residual aldehyde functionality within the aldol product rendered the tissue adhesive properties by bonding two bone tissues. The aldehyde functionality also facilitated facile post-synthetic modifications with nucleophilic reagents. Finally, we demonstrate that the novel hydrogel is biocompatible with encapsulated stem cells that show a linear rate of expansion in our 3-6 days of study.
  •  
31.
  • Biel, Anders (författare)
  • Mechanical behaviour of adhesive layers : experimental methods, cohesive laws, and fracture mechanics
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Adhesive joining is today viewed as one of the key technologies to achieve decreased emissions in the automobile industry. To decrease weight, optimal material selection often results in different materials for different parts. This leads to the necessity to join mixed material. Here, the use of adhesives is the most promising joining technology. For a rational design process, good models for strength analysis of adhesively joined structures are essential. With cohesive modelling, fracture of the adhesive layer is modelled with a stress-deformation law. This law - often denoted a cohesive law - gives the traction exerted on the adherends due to the deformation of the adhesive layer. This thesis is concerned with experimental methods to measure cohesive properties of engineering adhesives and standardized methods to measure the fracture energy of adhesives. A new method to measure cohesive laws is developed. With this method, the cohesive law of an epoxy adhesive is measured in shear. In peel loading, with elastically deforming adherends, the cohesive law is shown to be independent of the geometry of the specimen. If the adherends deform plastically the fracture energy increases. Experiments are performed in order to determine the temperature dependence of the cohesive layer for an epoxy adhesive. It is shown that the peak stress is strongly dependent on the temperature while the fracture energy shows only small temperature dependence. Experiments are also performed to study the influence of strain rate in peel and shear loading. The experiments show that the peak stress increases with an increasing strain rate and that the fracture energy increase in peel loading and decreases in shear with increasing strain rate. A new method to experimentally determine the relation between damage and plasticity in the adhesive during the fracture process is developed. For the present adhesive, it is shown that only minor plasticity occurs during the fracture process in peel loading. For peel, several commonly used methods to evaluate the fracture energy using the double cantilever beam specimen are critically studied. For some methods the error in evaluated fracture energy is larger than 40 %. It is shown that the evaluated fracture energy is more dependent on the choice of method than on the cohesive properties of the adhesive layer.
  •  
32.
  •  
33.
  •  
34.
  • Bjurhager, Ingela, et al. (författare)
  • Mechanical performance of yew (Taxus baccata L.) from a longbow perspective
  • 2013
  • Ingår i: Holzforschung. - : Walter de Gruyter GmbH. - 0018-3830 .- 1437-434X. ; 67:7, s. 763-770
  • Tidskriftsartikel (refereegranskat)abstract
    • Yew (Taxus baccata L.) longbow was the preferred weapon in the Middle Ages until the emergence of guns. In this study, the tensile, compression, and bending properties of yew were investigated. The advantage of yew over the other species in the study was also confirmed by a simple beam model. The superior toughness of yew has the effect that a yew longbow has a higher range compared with bows made from other species. Unexpectedly, the mechanical performance of a bow made from yew is influenced by the juvenile-to-mature wood ratio rather than by the heartwood-to-sapwood ratio. A yew bow is predicted to have maximized performance at a juvenile wood content of 30-50%, and located at the concave side (the compressive side facing the bowyer). Here, the stiffness and yield stress in compression should be as high as possible.
  •  
35.
  • Bjurhager, Ingela, et al. (författare)
  • State of degradation in archeological oak from the 17th century vasa ship : Substantial strength loss correlates with reduction in (holo)cellulose molecular weight
  • 2012
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; :8, s. 2521-2527
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1628, the Swedish warship Vasa capsized on her maiden voyage and sank in the Stockholm harbor. The ship was recovered in 1961 and, after polyethylene glycol (PEG) impregnation, it was displayed in the Vasa museum. Chemical investigations of the Vasa were undertaken in 2000, and extensive holocellulose degradation was reported at numerous locations in the hull. We have now studied the longitudinal tensile strength of Vasa oak as a function of distance from the surface. The PEG-content, wood density, and cellulose microfibril angle were determined. The molar mass distribution of holocellulose was determined as well as the acid and iron content. A good correlation was found between the tensile strength of the Vasa oak and the average molecular weight of the holocellulose, where the load-bearing cellulose microfibril is the critical constituent. The mean tensile strength is reduced by approximately 40%, and the most affected areas show a reduction of up to 80%. A methodology is developed where variations in density, cellulose microfibril angle, and PEG content are taken into account, so that cell wall effects can be evaluated in wood samples with different rate of impregnation and morphologies.
  •  
36.
  • Bjurhager, Ingela, et al. (författare)
  • Towards improved understanding of PEG-impregnated waterlogged archaeological wood : A model study on recent oak
  • 2010
  • Ingår i: Holzforschung. - 0018-3830 .- 1437-434X. ; 64:2, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • To prevent deformation and cracking of waterlogged archaeological wood, polyethylene glycol (PEG) as a bulk impregnation agent is commonly applied. PEG maintains the wood in a swollen state during drying. However, swelling of wood can reduce its mechanical properties. In this study, the cellular structure of oak and cell wall swelling was characterized by scanning electron microscopy (SEM) of transverse cross-sections, and the microfibril angle of oak fibers was determined by wide angle X-ray scattering (WAXS). Samples of recent European oak (Quercus robur L) impregnated with PEG (molecular weight of 600) were tested in axial tension and radial compression. Mechanical tests showed that axial tensile modulus and strength were only slightly affected by PEG, whereas radial compressive modulus and yield strength were reduced by up to 50%. This behavior can be explained by the microstructure and deformation mechanisms of the material. Microfibril angles in tensile test samples were close to zero. This implies tensile loading of cellulose microfibrils within the fiber cell walls without almost any shear in the adjacent amorphous matrix. These results are important because they can help separate the impact of PEG on mechanical properties from that of chemical degradation in archaeological artifacts, which display only small to moderate biological degradation.
  •  
37.
  • Blanco, N., et al. (författare)
  • Analysis of the mixed-mode end load split delamination test
  • 2006
  • Ingår i: Composite structures. - : Elsevier BV. - 0263-8223 .- 1879-1085. ; 76:1-2, s. 14-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite delaminations are commonly characterized using the double cantilever beam test for mode 1, the end-notched flexure test or the end load split test for mode 11 and the mixed-mode bending test for mixed-mode. For all these tests, the mode mix remains constant and does not vary with the crack length. However, in the mixed-mode end load split test (MMELS), the delamination propagates under a varying mode mix that depends on the crack extension, which is a more realistic scenario. The MMELS test has been previously analysed by different researchers but the resulting expressions are not equivalent. A more accurate alternative analysis of the test, based on the finite element method and the virtual crack closure technique, is used in the present work for comparison. The results are compared to the predictions of approaches presented in the literature and significant findings are found for materials characterization using the MMELS test.
  •  
38.
  •  
39.
  • Blanco, N., et al. (författare)
  • Mechanical hinge system for delamination tests in beam-type composite specimens
  • 2008
  • Ingår i: Composites Science And Technology. - : Elsevier BV. - 0266-3538 .- 1879-1050. ; 68:7-8, s. 1837-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • During the experimental study of composite delaminations external loads are usually applied by means of steel or aluminium parts bonded to the surface of beam-type specimens. The bonded joints between the metallic parts and the composite specimen might fail, especially when the tests are carried out under extreme temperatures or fatigue conditions. In addition, the point of application of the external load does not coincide with the neutral axis of the specimen beam, inducing non-linear effects that can lead, for example, to incorrect estimations of fracture toughness. In this paper, the relative importance of the non-linear effects in delamination tests is evaluated and the corresponding correction factors discussed. Next, the design of an improved mechanical hinge that avoids non-linear effects, eliminates bonded joints and can be adapted to different specimen thicknesses is introduced.
  •  
40.
  • Blanco, N., et al. (författare)
  • Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading
  • 2004
  • Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683 .- 1879-2146. ; 41:15, s. 4219-4235
  • Tidskriftsartikel (refereegranskat)abstract
    • Delamination growth under fatigue loads in real composite components generally develops in a non-constant propagation mode. The aim of the investigation described in this article was to develop a model capable of predicting the fatigue delamination growth in a general case, under varying mode mix conditions. The crack growth development in essentially unidirectional laminates of carbon-fibre reinforced epoxy was analysed in terms of the Paris law for different constant propagation modes: mode I (double-cantilever beam test), mode II (end-notched flexure test) and different mixed-modes I/II (mixed-mode bending test). The dependence of the Paris law parameters oil mode mix is compared with the existing models in the literature. It is shown that these models do not reproduce the non-monotonic dependence on mode mix which has been observed in experimental data. Therefore, an improved phenomenological model is introduced and compared with the experimental data obtained by other researchers. To check the ability of the model to predict variable mixed-mode fatigue delamination, the mixed-mode end-loaded split test was employed and the experimental results were compared to the predictions of the model. The underlying mechanisms responsible for the dependency of the crack propagation rates on the degree of mode mix are also discussed on the basis of fractographic analysis.
  •  
41.
  • Bogren, Karin M., et al. (författare)
  • Dynamic-mechanical properties of wood-fibre reinforced polyactide : experimental characterization and micro-mechanical modelling
  • 2006
  • Ingår i: Journal of Thermoplastic Composite Materials. - : SAGE Publications. - 0892-7057 .- 1530-7980. ; 19:6, s. 613-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood-fiber reinforced polylactide is a biodegradable compositewhere both fibers and matrix are from renewableresources. When designing new materials of this kind, itis useful to measure the influence of fiber–matrixinterface properties on macroscopic mechanicalproperties. In particular, a quantitative measure of thedynamic stress transfer between the fibers andthe matrix when the material is subjected tocyclic loading would simplify the development of wood-fibercomposites. This is obtained by comparing themechanical dissipation of the composite with avalue predicted by a viscoelastic micromechanical model basedon perfect interfacial stress transfer. Theloss factors predicted by the model are 0.12 and 0.16 at dryand humid conditions, respectively, which amountto 63 and 66% of the experimentally determinedvalues. For Young's moduli the predicted values are 1.01 and0.88 GPa, which correspond to 92% of the experimentallydetermined values. The mismatch between thepredicted and experimental values may be attributed toimperfect interfaces with restrained stress transfer.Loss factors are also determined for specificmolecular bonds using dynamic Fourier transform infrared(FT-IR) spectroscopy. These values show the sametrends with regard to moisture content as themacroscopically determined loss factors.
  •  
42.
  •  
43.
  • Brandberg, August, 1990- (författare)
  • Insights in paper and paperboard performance by fiber network micromechanics
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fiber networks are ubiquitous due to their low cost and high ratio of mechanical performance to weight. Fiber networks made of cellulose fibers from trees are used as information carriers (paper) and as packaging (board). Often the ideal product is both mechanically sturdy and possible to print on. This thesis investigates the underlying reasons for the mechanical performance of paper and board through the discretization and direct simulation of every fiber in the network.In Paper A the effect of fiber-fiber bond geometry on sheet stiffness is investigated. Many packaging products seek to maximize the bending stiffness by employing stiff outer layers and a bulkier layer in the middle. In bulky sheets, the fibers are frequently uncollapsed resulting in a more compliant bonded segment. Because all the loads in the network are transferred via the bonds, such compliance can cause unexpectedly large decreases in mechanical performance. Although many models have been presented which aim to predict the tensile stiffness of a sheet, these predictions tend to overestimate the resulting stiffness. One reason is that the bonds are generally considered rigid. By finite element simulations, we demonstrated the effect of the lumina configuration on the stiffness of the bonded segment on the scale of single fiber-to-fiber bonds, and that the average state of the fiber lumen has a marked effect on the macroscopic response of fiber networks when the network is bulky, has few bonds, or has a low grammage.Compression strength is central in many industrial applications. In paper B we recreated the short span compression test in a simulation setting. The networks considered are fully three-dimensional and have a grammage of 80 to 400 gsm, which is the industrially relevant range. By modeling compression strength at the level of individual fibers and bonds, we showed that fiber level buckling or bifurcation phenomena are unlikely to appear at the loads at which the macroscopic sheet fails.In paper C, we developed a micromechanical model to study the creation of curl in paper sheets subjected to a moisture gradient through the sheet. A moisture gradient is always created during the printing process, which may lead to out-of-plane dimensional instability. We showed that the swelling anisotropy of individual fibers bonded at non-parallel angles causes an additional contribution to the curl observed on the sheet level.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Correa, E., et al. (författare)
  • Effects of the presence of compression in transverse cyclic loading on fibre-matrix debonding in unidirectional composite plies
  • 2007
  • Ingår i: Composites. Part A, Applied science and manufacturing. - : Elsevier BV. - 1359-835X .- 1878-5840. ; 38:11, s. 2260-2269
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatigue of composite materials is of great concern in load-carrying structures. The first type of damage to appear is generally transverse cracks in off-axis plies. These cracks form when fibre-matrix debonds coalesce. The underlying mechanism is hence fatigue growth of debonds at the fibre-matrix interfaces. In the present study, debond growth has been characterized under tensile and compressive cyclic loading of single glass fibres embedded in polymer matrix. The debond length was deter-mined by in situ microscopy with transmitted polarized light showing the more damaging effect of tension-compression cyclic loading than tension-tension cyclic loading. A boundary element model has been developed and interfacial fracture mechanics concepts applied over the numerical results aiming to give an explanation of this experimental fact. These results may be used to formulate a fatigue growth law at a local microscopic level, at a stage prior to the formation of any visible damage, i.e. transverse cracks. Ideas of how to develop this methodology further are also discussed.
  •  
48.
  • da Costa, Marcus Vinicius Tavares, et al. (författare)
  • Prediction of loss of barrier properties in cracked thin coatings on polymer substrates subjected to tensile strain
  • 2021
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 426
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin brittle coatings on polymer films are a potentially useful material combination for food packaging applications. The brittle coatings inevitably risk cracking when the package is converted. This strain-induced cracking leads to a loss of the key barrier properties. In design of packaging materials, it would be useful to predict the loss of the oxygen transmission rate (OTR) as a function of the applied tensile strain, which are linked by the crack opening and crack spacing in the coating. Previous works have presented a model that predicts the effect of strain on the OTR in the presence of cracks in the coating. This work uses an improved numerical model based on finite element method (FEM) to predict the oxygen permeability more accurately, especially for thin coatings with high crack densities. The numerical predictions show reasonable correspondence with experimental results for SiOx coatings. These results as well as predictions for previously tested metal-oxide coated polymer films show a significant increase in OTR at crack onset, which suggests that efforts should be made to make the coatings more ductile with higher crack onset strains if the barrier performance should be maintained in converted packages. The quantitative link from deformation over the damage state to barrier properties indicate that mechanics could provide a tool to aid the design of improved food packages with retained barrier capacity.
  •  
49.
  •  
50.
  • Doroudgarian, Newsha (författare)
  • High Performance Bio-based Composites : Mechanical and Environmental Durability
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The presented work is a part of the ongoing effort on the development of high performance bio-based composites with enhanced durability, under static and dynamic mechanical loading including the exposure to elevated humidity. The impact of relative humidity on the performance of cellulosic fibers (natural and regenerated), bio-based resins and their composites was studied. The material performance was rated against the data for glass fiber epoxy, as the reference. The comparison of water absorption results for unreinforced resins and for composites showed that the cellulosic reinforcement is primarily responsible for the transport and uptake of moisture in the composites. The effect of chemical treatment on the cellulosic fibers, as a protection against moisture, was evaluated. However, the treatment did not improve the moisture resistance in composites significantly. Quasi-static tensile tests revealed that some of the bio-based resins and their composites performed very well and comparable to the composites of synthetic epoxy, even at high humidity. However, any structural material is supposed to hold mechanical loads over a long service time and most often in harsh environmental conditions. Hence, tension-tension fatigue tests were performed on the fiber bundles as well as on the composites. The fibers of choice as the reinforcement for further mechanical testing were regenerated cellulose fibers (RCF), mainly owing to the stable geometry and properties. Due to the high nonlinearity of RCF, the fatigue tests were limited in number and the focus was on analyzing the mechanisms underlying the fatigue behavior rather than on constructing S-N curves. Strain evolution of the bio-based composites during the dynamic fatigue was very similar to that observed in the static fatigue (creep). It confirmed the strong influence of viscoelastic and viscoplastic phenomena on the overall performance of the material under the rapid loading conditions in fatigue. Since the durability of composites greatly depends on the material’s ability to stand the internal damages (e.g. debonding, microcracking, delaminations), the interfacial properties in the bio-based composites were addressed. To investigate the fracture toughness of bio-based composites, the double cantilever beam (DCB) tests were carried out, under static and dynamic loading. Moreover, the DCB results were utilized as a measure of the fiber chemical treatment’s efficiency to improve the adhesion between RCF and the resin. The nonlinearity of RCF strongly influenced the results obtained from DCB tests, which complicated the analysis regarding the effectiveness of the fiber surface treatment. Nevertheless, this study brings forward the issues that have to be dealt with, in order to characterize and predict the performance of these composite materials with highly nonlinear reinforcing fibers. Overall, the results presented in this thesis give an insight into the behavior of bio-based composites, at various environments and under different types of mechanical loading. Based on these findings, the potential use of these materials in structural applications can be assessed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 220
Typ av publikation
tidskriftsartikel (119)
konferensbidrag (40)
doktorsavhandling (20)
proceedings (redaktörskap) (17)
licentiatavhandling (10)
annan publikation (9)
visa fler...
forskningsöversikt (2)
bokkapitel (2)
rapport (1)
visa färre...
Typ av innehåll
refereegranskat (167)
övrigt vetenskapligt/konstnärligt (52)
populärvet., debatt m.m. (1)
Författare/redaktör
Gamstedt, E. Kristof ... (129)
Gamstedt, Kristofer (65)
Afshar, Reza (18)
Bjurhager, Ingela (17)
van Dijk, Nico P. (11)
Vorobyev, Alexey (11)
visa fler...
Fayet, Pierre (10)
Lindström, Mikael (10)
Gamstedt, Kristofer, ... (10)
Bengtsson, Rhodel (9)
Tavares da Costa, Ma ... (9)
Berthold, Fredrik (8)
Tavares da Costa, Ma ... (8)
Bolinsson, Jessica (8)
Berthold, F. (7)
Josefsson, Gabriella (7)
Ahlgren, Anders (6)
Varna, Janis (6)
Chinga-Carrasco, Gar ... (6)
Berglund, Lars A. (6)
Almgren, Karin M. (5)
Hirsch, Jan-Michael (5)
Florisson, Sara (5)
Neagu, R. Cristian (5)
Wiklund, Urban (4)
Almkvist, Gunnar (4)
Rännar, Lars-Erik (4)
Li, Hu, 1986- (4)
Leifer, Klaus, 1965- (4)
Gamstedt, Kristofer ... (4)
Mousavi, Mahmoud (4)
Miettinen, Arttu (4)
Isaksson, Per (4)
Costa, J (3)
Gudmundson, Peter (3)
Johansson, Mats (3)
Bader, Thomas K. (3)
Almgren, Karin (3)
Malmberg, Filip (3)
Lindblad, Joakim (3)
Nyholm, Leif, 1961- (3)
Asp, Leif (3)
Edgren, Fredrik (3)
Li, Yanjun (3)
Gamstedt, E. Kristof ... (3)
Jansson, Ulf, 1960- (3)
Iversen, Tommy (3)
Blanco, N. (3)
Joffre, Thomas, 1987 ... (3)
Madsen, Bo (3)
visa färre...
Lärosäte
Uppsala universitet (152)
Kungliga Tekniska Högskolan (65)
RISE (24)
Luleå tekniska universitet (19)
Sveriges Lantbruksuniversitet (10)
Karlstads universitet (8)
visa fler...
Chalmers tekniska högskola (5)
Mittuniversitetet (4)
Linnéuniversitetet (4)
Högskolan i Skövde (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (220)
Forskningsämne (UKÄ/SCB)
Teknik (169)
Naturvetenskap (25)
Lantbruksvetenskap (16)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy