SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ganzeveld L.) "

Sökning: WFRF:(Ganzeveld L.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
2.
  • House, J, et al. (författare)
  • Climate and air quality
  • 2006
  • Ingår i: Millennium Ecosystem Assessment 2005 - Current State and Trends. Findings of the Condition and Trends Working Group (Ecosystems and Human Well-being). ; 1, s. 350-390
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Pitman, A. J., et al. (författare)
  • Regionalizing global climate models
  • 2012
  • Ingår i: International Journal of Climatology. - : Wiley. - 1097-0088 .- 0899-8418. ; 32:3, s. 321-337
  • Forskningsöversikt (refereegranskat)abstract
    • Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and local climate and perhaps trigger teleconnections that provide significant feedbacks on the global climate. These processes include fire, irrigation, land cover change (including crops and urban landscapes), and the emissions of biogenic volatile organic compounds by vegetation. Many of these interact within the atmosphere via dynamical, physical, and chemical mechanisms that lead to boundary-layer feedbacks. It is unlikely that any of these processes have a significant global-scale impact on the Earth's climate in the sense that the amount of warming due to a doubling of well mixed greenhouse gases would change if these processes were explicitly represented in climate models. These phenomena are usually local in space (e.g. urban) or in time (e.g. fire) and probably do not provide the on-going and sustained forcing to affect the global climate. However, for most impacts and adaptation research it is the regional and local climate that defines climate risk. At these scales, processes missing in climate models can have a substantially larger local-scale impact than the additional radiative forcing due to increasing greenhouse gases. Thus, while climate models are well designed for global and continental scales they exclude a suite of important processes that are locally and/or regionally important. We review these missing processes and highlight the research required to resolve the representation of these regional-scale processes in climate models. We also discuss the experimental methodology required to rigorously determine whether these processes are restricted to a local or regional-scale role or whether they do trigger robust teleconnections that would demonstrate global-scale significance. Copyright (c) 2011 Royal Meteorological Society
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy