SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gao Shu Rong) "

Sökning: WFRF:(Gao Shu Rong)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
4.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
5.
  • Wu, Zi Yi, et al. (författare)
  • Convective transport characteristics of condensing droplets in moist air flow
  • 2023
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 35:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensation of convective moist air flow is a crucial physical process and is directly related to various industries. It is essential to understand the underlying growth mechanism of condensing droplets, while past studies have commonly considered convective transport with a negligible/simplified approach. In this work, a three-dimensional transient multiphysics coupling model was developed to investigate the transport characteristics of condensing droplets in convective moist air flow. This model typically interconnects heat transfer with vapor-liquid phase change, mass transport, and fluid flow. The results reveal that convective flow significantly dominates heat and mass transport during condensation. On the gas side, the incoming flow thins the diffusion layer at the windward part with a large concentration gradient. However, a low vapor-concentration zone behind the droplet is formed due to the resulting rear-side vortex, which presents an increased influence as the contact angle increases. By forcing molecular diffusion with convection transport, vapor transport from surroundings to the condensing interface is enhanced several times depending on the Reynolds number. Within the droplet, the flow shearing at the interface is principally responsible for the strong internal convection, while the Marangoni effect is negligible. The internal flow greatly affects the droplet temperature profile with a large gradient close to the base. Finally, convective flow contributes to over 3.3 times higher overall heat transfer coefficient than the quiescent environment. In addition, in interaction-governed growth, transport characteristics depend on not only the size and space distributions of droplets but also the interaction between droplets and convective flow.
  •  
6.
  • Zheng, Shao Fei, et al. (författare)
  • Theoretical and Three-Dimensional Molecular Dynamics Study of Droplet Wettability and Mobility on Lubricant-Infused Porous Surfaces
  • 2023
  • Ingår i: Langmuir. - 0743-7463. ; 39:37, s. 13371-13385
  • Tidskriftsartikel (refereegranskat)abstract
    • Profiting from their slippery nature, lubricant-infused porous surfaces endow with droplets excellent mobility and consequently promise remarkable heat transfer improvement for dropwise condensation. To be a four-phase wetting system, the droplet wettability configurations and the corresponding dynamic characteristics on lubricant-infused porous surfaces are closely related to many factors, such as multiple interfacial interactions, surface features, and lubricant thickness, which keeps a long-standing challenge to promulgate the underlying physics. In this work, thermodynamically theoretical analysis and three-dimensional molecular dynamics simulations with the coarse-grained water and hexane models are carried out to explore droplet wettability and mobility on lubricant-infused porous surfaces. Combined with accessible theoretical criteria, phase diagrams of droplet configurations are constructed with a comprehensive consideration of interfacial interactions, surface structures, and lubricant thickness. Subsequently, droplet sliding and coalescence dynamics are quantitatively defined under different configurations. Finally, in terms of the promotion of dropwise condensation, a non-cloaking configuration with the encapsulated state underneath the droplet is recommended to achieve high droplet mobility owing to the low viscous drag of the lubricant and the eliminated pinning effect of the contact line. On the basis of the low oil-water and water-solid interactions, a stable lubricant layer with a relatively low thickness is suggested to construct slippery surfaces.
  •  
7.
  • Cho, Yoon Shin, et al. (författare)
  • Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D.
  •  
8.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
9.
  • Zheng, Shao Fei, et al. (författare)
  • An inverse optimization of turbulent flow and heat transfer for a cooling passage with hierarchically arranged ribs in turbine blades
  • 2024
  • Ingår i: International Journal of Heat and Mass Transfer. - 0017-9310. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the limited cold-air amount and pressure in supply systems, high-efficient heat transfer with low-level friction loss is highly desired for cooling units of a turbine blade. To exploit the potential improvement of hierarchically arranged ribs in cooling passages proposed previously, multi-parameter optimizations for rib arrangements are implemented by integrating the simplified conjugate-gradient algorithm with the turbulent flow and heat transfer model. Rib heights as design variables are optimized with various performance indices as objective functions at a fixed Re. The optimizations confirm that using the wall temperature difference and Nu as the objective function, respectively, a limited heat transfer improvement is achieved with a greatly increased friction loss. Taking the overall performance factor as the objective function, different optimal designs at different constraint conditions possess hierarchical characteristics. A significant friction loss reduction of 52.1%, 54.7%, and 54.8%, is achieved with a moderate heat transfer loss of 10.9%, 7.0%, and 2.3%. Despite different thermal and friction performances, their overall performances are consistent with a remarkable increase of 13.9%, 21.2%, and 27.3%. Finally, the optimization strategy coupling the multi-parameter optimization and hierarchical scheme is confirmed as effective for enhancing the thermohydraulic performance of convective heat transfer systems with perturbation elements.
  •  
10.
  • Zheng, Shao Fei, et al. (författare)
  • Effect of wall curvature on heat transfer and hydrodynamics in a ribbed cooling passage
  • 2024
  • Ingår i: International Journal of Heat and Fluid Flow. - 0142-727X. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • Simplified rectangular ribbed cooling passages with a flat wall are extensively considered in exploring the internal cooling features of turbine blades, but the realistic blade has a twisted shape inherently. The effects induced by the curved wall have not been clarified in detail. In this work, adopting a verified v2f turbulence model, numerical investigations are completed to evaluate the effects of the curved wall on the internal cooling characteristics of a ribbed channel. Adopting the unified ribbed channel, flat, convex, and concave walls with distinct curvatures are comprehensively evaluated and compared in a wide Re range for the turbulent flow and heat transfer features as well as the flow and thermal performance. It is found that using the flat wall, ribs can typically induce recirculation vortices having a two-dimensional nature. In contrast, the curved wall significantly contributes to the counter-rotating vortex pairs on the spanwise plane. Combined with recirculation vortices offered by the ribs, the turbulent flow of the cooling channel with the curved wall has a remarkable three-dimensional feature. Hence, the turbulent activity and fluid mixing are enhanced greatly along with the raised heat transfer enhancement and friction loss. Particularly, the convex wall with a curvature of K = 4 provides 28.6 % higher heat transfer performance (Nu/Nu0) but 88.4 % higher resistance (f/f0) than the flat wall. Considering the overall cooling performance, the concave wall with a relatively small curvature is suggested with an improvement of up to 32.8 % concerning the factor (Nu/Nu0)/(f/f0) and 9.5 % on (Nu/Nu0)/(f/f0)1/3. Finally, it is highlighted that considering the effect of the wall curvature, the current study stimulates the mechanistic understanding and provides a design guideline for high-performance blade internal cooling.
  •  
11.
  • Zheng, Shao Fei, et al. (författare)
  • Fluid flow and heat transfer in a rectangular ribbed channel with a hierarchical design for turbine blade internal cooling
  • 2022
  • Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • For internal cooling of a turbine blade, various advanced rib turbulators can markedly contribute to the heat transfer enhancement while suffering a great increase in pressure loss. In those designs, ribs with the same configuration are periodically and evenly mounted on the channel wall. In this context, this work proposes a hierarchical design concept to optimize the rib arrangement with the desired reduction in pressure loss. In terms of the rib height, this new design concept is implemented to construct three new rib configurations. Based on an established turbulence model, three-dimensional (3D) numerical simulations are entirely adopted to verify the feasibility of the new configuration in a wide Reynolds number range. The numerical results demonstrate that the optimal configuration with a linearly decreasing rib height can greatly reduce the pressure loss with a slight heat transfer deterioration. The negligible reduction in the heat transfer performance results from the enhanced fluid impingement on the reattachment region because of the lowering effect of the mainstream, although small ribs weaken the fluid impingement. The marked pressure drop reduction comes from the combination of the lowering effect and small ribs which constrains the separation vortex behind ribs. Furthermore, the comparison of the overall thermal performance is carried out considering a wide range of the Reynolds number, pitch ratios, and aspect ratios. The optimal configuration can greatly enhance the overall thermal performance up to 138.3% for the factor (Nu/Nu0)/(f/f0) and up to 32.5% for the factor (Nu/Nu0)/(f/f0)1/3. Eliminating the entrance effect of developing flow, the increment in the overall thermal performance is considerably reduced but still keeps at a high level. Finally, it is significantly highlighted that as a simple but effective improvement, the hierarchical design concept presents great potential in developing high-performance internal cooling of turbine blades.
  •  
12.
  • Zheng, Shao Fei, et al. (författare)
  • Performance evaluation with turbulent flow and heat transfer characteristics in rectangular cooling channels with various novel hierarchical rib schemes
  • 2023
  • Ingår i: International Journal of Heat and Mass Transfer. - 0017-9310. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulators, such as ribs, dimples, and pin-fins, play a vital role in the internal cooling efficiency of turbine blades. As a typical turbulator, various rib configurations using a uniform arrangement scheme have indicated high heat transfer enhancement but the friction loss is simultaneously subject to a great increase. In this work, a novel hierarchical arrangement scheme of ribs is developed aiming to improve the cooling efficiency. Adopting the uniform scheme as a baseline, the hierarchical scheme is implemented for six representative rib configurations (including transverse ribs, angled ribs, V-shaped ribs, inverted V-shaped ribs, M-shaped ribs, and inverted M-shaped ribs) and evaluated for its feasibility and generality. For different cooling designs, turbulent flow and heat transfer of the ribbed cooling channel are studied by three-dimensional numerical simulations based on the finite volume method with a constructed turbulence model. It is found that for all rib configurations, the hierarchical scheme can remarkably reduce the friction loss as desired, especially for the inverted V-shaped rib with a reduction of up to 50%. Due to the occurrence of flow separation, secondary flows offered by transverse ribs are characterized by a two-dimensional recirculation vortex behind the rib. For other rib configurations, secondary flows present a typical three-dimensional characteristic including the downwash flows along the inclined rib leg and the longitudinal vortices. The usage of the hierarchical scheme with small ribs strongly suppresses these secondary flows, which contributes to the significant decrease in form drag loss. Meanwhile, using the hierarchical scheme produces a slight heat transfer deterioration commonly, which is because the constrained secondary vortices weaken the turbulent mixing and convection heat transfer. Significantly, for the two W-shaped ribs, the limited secondary vortices but fully developed under the hierarchical scheme achieve a higher heat transfer enhancement. Finally, for all considered ribs, the hierarchical scheme can improve the overall performance factor of (Nu/Nu0)/(f/f0)1/3 by more than 10%, and up to 21.15% for the V-shaped rib. Adjusting design variables, including the decreasing ratio of the rib size and the initial rib size, the hierarchical scheme still provides even higher performance enhancement.
  •  
13.
  • Zheng, Shao Fei, et al. (författare)
  • Scale effect of micro ribs on the turbulent transport in an internal cooling channel
  • 2024
  • Ingår i: Physics of Fluids. - 1070-6631. ; 36:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the limited supply and pressure margin in the air system, a cooling technique providing efficient heat transfer with lower flow loss is highly desirable for gas turbine blades. Microscale ribs have promised to be a potential cooling candidate. In this work, large eddy simulations are implemented to reveal the scale effect of micro ribs on the near-wall turbulent transport in a cooling channel. Considering a mechanistic study and practical applications, both single-rib and rib-array arrangements are studied with a wide range of dimensionless viscous-scaled rib heights involving the entire boundary layer. The results indicate that the rib-induced destruction and regeneration of coherent structures are, respectively, responsible for the weakened momentum transport and enhanced heat transport in the near-wall region. Using tiny ribs, regenerated quasi-streamwise vortices are mainly located in the buffer layer. The resulting turbulence burst greatly enhances wall heat transfer while keeping a lower flow loss due to the weak form drag. Regenerated hairpin vortices using tall ribs are activated in the log-law layer and intensively interact with mainstream. Along with improved wall heat transfer, the significant form drag results in a remarkably high flow loss. Accordingly, heat transfer and flow loss show different dependencies on the rib height, which contributes to an optimum height interval of ribs (e+ = 20-40) located in the high buffer and low log-law layer for maximizing the overall performance. Furthermore, for the rib-array scheme, adequate inter-rib spacing is essential to achieve turbulence regeneration for enhancing near-wall heat transport.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy