SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garrido Zabala Berta) "

Sökning: WFRF:(Garrido Zabala Berta)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Nylund, Patrick, et al. (författare)
  • A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma
  • 2021
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is a heterogeneous haematological disease that remains clinically challenging. Increased activity of the epigenetic silencer EZH2 is a common feature in patients with poor prognosis. Previous findings have demonstrated that metabolic profiles can be sensitive markers for response to treatment in cancer. While EZH2 inhibition (EZH2i) has proven efficient in inducing cell death in a number of human MM cell lines, we hereby identified a subset of cell lines that despite a global loss of H3K27me3, remains viable after EZH2i. By coupling liquid chromatography-mass spectrometry with gene and miRNA expression profiling, we found that sensitivity to EZH2i correlated with distinct metabolic signatures resulting from a dysregulation of genes involved in methionine cycling. Specifically, EZH2i resulted in a miRNA-mediated downregulation of methionine cycling-associated genes in responsive cells. This induced metabolite accumulation and DNA damage, leading to G2 arrest and apoptosis. Altogether, we unveiled that sensitivity to EZH2i in human MM cell lines is associated with a specific metabolic and gene expression profile post-treatment.
  •  
3.
  •  
4.
  • Nylund, Patrick, et al. (författare)
  • PVT1 interacts with the polycomb repressive complex 2 to suppress genomic regions with pro-apoptotic and tumour suppressor functions in multiple myeloma
  • 2024
  • Ingår i: Haematologica. - : Ferrata Storti Foundation. - 0390-6078 .- 1592-8721. ; 109:2, s. 567-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma is a heterogeneous hematological disease that originates from the bone marrow and is characterized by the monoclonal expansion of malignant plasma cells. Despite novel therapies, multiple myeloma remains clinically challenging. A common feature among patients with poor prognosis is the increased activity of the epigenetic silencer EZH2, which is the catalytic subunit of the PRC2. Interestingly, the recruitment of PRC2 lacks sequence specificity and, to date, the molecular mechanisms that define which genomic locations are destined for PRC2-mediated silencing remain unknown. The presence of a long non-coding RNA (lncRNA)-binding pocket on EZH2 suggests that lncRNA could potentially mediate PRC2 recruitment to specific genomic regions. Here, we coupled RNA immunoprecipitation sequencing, RNA-sequencing and chromatin immunoprecipitation-sequencing analysis of human multiple myeloma primary cells and cell lines to identify potential lncRNA partners to EZH2. We found that the lncRNA plasmacytoma variant translocation 1 (PVT1) directly interacts with EZH2 and is overexpressed in patients with a poor prognosis. Moreover, genes predicted to be targets of PVT1 exhibited H3K27me3 enrichment and were associated with pro-apoptotic and tumor suppressor functions. In fact, PVT1 inhibition independently promotes the expression of the PRC2 target genes ZBTB7C, RNF144A and CCDC136. Altogether, our work suggests that PVT1 is an interacting partner in PRC2-mediated silencing of tumor suppressor and pro-apoptotic genes in multiple myeloma, making it a highly interesting potential therapeutic target.
  •  
5.
  • Nylund, Patrick, et al. (författare)
  • The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma
  • 2023
  • Ingår i: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
  •  
6.
  • Qasim, Muhammad Suleman, et al. (författare)
  • Cold-Active Shewanella glacialimarina TZS-4(T) nov. Features a Temperature-Dependent Fatty Acid Profile and Putative Sialic Acid Metabolism
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Species of genus Shewanella are among the most frequently identified psychrotrophic bacteria. Here, we have studied the cellular properties, growth dynamics, and stress conditions of cold-active Shewanella strain #4, which was previously isolated from Baltic Sea ice. The cells are rod-shaped of similar to 2 mu m in length and 0.5 mu m in diameter, and they grow between 0 and 25 degrees C, with an optimum at 15 degrees C. The bacterium grows at a wide range of conditions, including 0.5-5.5% w/v NaCl (optimum 0.5-2% w/v NaCl), pH 5.5-10 (optimum pH 7.0), and up to 1mM hydrogen peroxide. In keeping with its adaptation to cold habitats, some polyunsaturated fatty acids, such as stearidonic acid (18:4n-3), eicosatetraenoic acid (20:4n-3), and eicosapentaenoic acid (20:5n-3), are produced at a higher level at low temperature. The genome is 4,456kb in size and has a GC content of 41.12%. Uniquely, strain #4 possesses genes for sialic acid metabolism and utilizes N-acetyl neuraminic acid as a carbon source. Interestingly, it also encodes for cytochrome c3 genes, which are known to facilitate environmental adaptation, including elevated temperatures and exposure to UV radiation. Phylogenetic analysis based on a consensus sequence of the seven 16S rRNA genes indicated that strain #4 belongs to genus Shewanella, closely associated with Shewanella aestuarii with a similar to 97% similarity, but with a low DNA-DNA hybridization (DDH) level of similar to 21%. However, average nucleotide identity (ANI) analysis defines strain #4 as a separate Shewanella species (ANI score=76). Further phylogenetic analysis based on the 92 most conserved genes places Shewanella strain #4 into a distinct phylogenetic clade with other cold-active marine Shewanella species. Considering the phylogenetic, phenotypic, and molecular characterization, we conclude that Shewanella strain #4 is a novel species and name it Shewanella glacialimarina sp. nov. TZS-4(T), where glacialimarina means sea ice. Consequently, S. glacialimarina TZS-4(T) constitutes a promising model for studying transcriptional and translational regulation of cold-active metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy