SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaskill D. K.) "

Sökning: WFRF:(Gaskill D. K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Huang, J., et al. (författare)
  • Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene
  • 2015
  • Ingår i: Journal of Physics Condensed Matter. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 27:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy relaxation of hot Dirac fermions in bilayer epitaxial graphene is experimentally investigated by magnetotransport measurements on Shubnikov-de Haas oscillations and weak localization. The hot-electron energy loss rate is found to follow the predicted Bloch-Gruneisen power-law behaviour of T-4 at carrier temperatures from 1.4K up to similar to 100 K, due to electron-acoustic phonon interactions with a deformation potential coupling constant of 22 eV. A carrier density dependence n(e)(-1.5) in the scaling of the T-4 power law is observed in bilayer graphene, in contrast to the n(e)(-0.5) dependence in monolayer graphene, leading to a crossover in the energy loss rate as a function of carrier density between these two systems. The electron-phonon relaxation time in bilayer graphene is also shown to be strongly carrier density dependent, while it remains constant for a wide range of carrier densities in monolayer graphene. Our results and comparisons between the bilayer and monolayer exhibit a more comprehensive picture of hot carrier dynamics in graphene systems.
  •  
5.
  • Kuehne, P, et al. (författare)
  • Polarization Selection Rules for Inter-Landau-Level Transitions in Epitaxial Graphene Revealed by the Infrared Optical Hall Effect
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 111:7, s. e077402-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the polarization selection rules of inter-Landau-level transitions using reflection-type optical Hall effect measurements from 600 to 4000  cm-1 on epitaxial graphene grown by thermal decomposition of silicon carbide. We observe symmetric and antisymmetric signatures in our data due to polarization preserving and polarization mixing inter-Landau-level transitions, respectively. From field-dependent measurements, we identify that transitions in coupled graphene monolayers are governed by polarization mixing selection rules, whereas transitions in decoupled graphene monolayers are governed by polarization preserving selection rules. The selection rules may find explanation by different coupling mechanisms of inter-Landau-level transitions with free charge carrier magneto-optic plasma oscillations.
  •  
6.
  • Harris, Ted D., et al. (författare)
  • What makes a cyanobacterial bloom disappear? : A review of the abiotic and biotic cyanobacterial bloom loss factors
  • 2024
  • Ingår i: Harmful Algae. - : Elsevier. - 1568-9883 .- 1878-1470. ; 133
  • Forskningsöversikt (refereegranskat)abstract
    • Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera -specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.
  •  
7.
  • Panchal, V., et al. (författare)
  • Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies
  • 2016
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We directly correlate the local (20 nm scale) and global electronic properties of a device containing mono-, bi- and tri-layer epitaxial graphene (EG) domains on 6H-SiC (0001) by simultaneously performing local surface potential measurements using Kelvin probe force microscopy and global transport measurements. Using well-controlled environmental conditions we investigate the doping effects of N-2, O-2, water vapour and NO2 at concentrations representative of the ambient air. We show that presence of O-2, water vapour and NO2 leads to p-doping of all EG domains. However, the thicker layers of EG are significantly less affected. Furthermore, we demonstrate that the general consensus of O-2 and water vapour present in ambient air providing majority of the p-doping to graphene is a common misconception. We experimentally show that even the combined effect of O-2, water vapour, and NO2 at concentrations higher than typically present in the atmosphere does not fully replicate p-doping from ambient air. Thus, for EG gas sensors it is essential to consider naturally occurring environmental effects and properly separate them from those coming from targeted species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy