SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gauthier Michelle S.) "

Sökning: WFRF:(Gauthier Michelle S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Dalton, April S., et al. (författare)
  • Deglaciation of the north American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1
  • 2023
  • Ingår i: QUATERNARY SCIENCE REVIEWS. - 0277-3791 .- 1873-457X. ; 321
  • Tidskriftsartikel (refereegranskat)abstract
    • The most recent deglaciation of the North American Ice Sheet Complex (NAISC: comprising the Innuitian, Cordilleran, and Laurentide ice sheets) offers a broad perspective from which to analyze the timing and rate of ice retreat, deglacial sea-level rise, and abrupt climate change events. Previous efforts to portray the retreat of the NAISC have been focused largely on minimum-limiting radiocarbon ages and ice margin location(s) tied to deglacial landforms that were not, for the most part, chronologically constrained. Here, we present the first version of North American Deglaciation Isochrones (NADI-1) spanning 25 to 1 ka in calendar years before present. Key new features of this work are (i) the incorporation of cosmogenic nuclide data, which offer a direct constraint on the timing of ice recession; (ii) presentation of all data and time-steps in calendar years; (iii) optimal, minimum, and maximum ice extents for each time-step that are designed to capture uncertainties in the ice margin position, and; (iv) extensive documentation and justification for the placement of each ice margin. Our data compilation includes 2229 measurements of Be-10, 459 measurements of Al-26 and 35 measurements of Cl-36 from a variety of settings, including boulders, bedrock surfaces, cobbles, pebbles, and sediments. We also updated a previous radiocarbon dataset (n = 4947), assembled luminescence ages (n = 397) and gathered uranium-series data (n = 2). After scrutiny of the geochronological dataset, we consider >90% of data to be reliable or likely reliable. Key findings include (i) a highly asynchronous maximum glacial extent in North America, occurring as early as 27 ka to as late as 17 ka, within and between ice sheets. In most marine realms, extension of the ice margin to the continental shelf break at 25 ka is somewhat speculative because it is based on undated and spatially scattered ice stream and geomorphic evidence; (ii) detachment of the Laurentide and Cordilleran ice sheets took place gradually via southerly and northerly 'unzipping' of the ice masses, starting at 17.5 ka and ending around 14 ka; (iii) the final deglaciation of Hudson Bay began at 8.5 ka, with the collapse completed by 8 ka. The maximum extent of ice during the last glaciation occurred at 22 ka and covered 15,470,000 km(2). All North American ice sheets merged at 22 ka for the first time in the Quaternary. The highly asynchronous Last Glacial Maximum in North America means that our isochrones (starting at 25 ka) capture ice advance across some areas, which is based on limited evidence and is therefore somewhat speculative. In the Supplementary Data, the complete NADI-1 chronology is available in PDF, GIF and shapefile format, together with additional visualizations and spreadsheets of geochronological data. The NADI-1 shapefiles are also available at https://doi.org/10.5281/zenodo.8161764.
  •  
3.
  •  
4.
  • Engel, Philipp, et al. (författare)
  • The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions
  • 2016
  • Ingår i: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 7:2
  • Forskningsöversikt (refereegranskat)abstract
    • As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the micro biome. The bee micro biome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee micro biome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
visa fler...
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Göteborgs universitet (3)
Uppsala universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy