SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gejl Kasper Degn) "

Sökning: WFRF:(Gejl Kasper Degn)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gejl, Kasper Degn, et al. (författare)
  • Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca(2+)Release and Uptake Rates in Highly Trained Endurance Athletes
  • 2020
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is presently known about the effects of acute high-intensity exercise or training on release and uptake of Ca(2+)by the sarcoplasmic reticulum (SR). The aims here were to characterize this regulation in highly trained athletes following (1) repeated bouts of high-intensity exercise and (2) a period of endurance training including high-intensity sessions. Eleven cross-country skiers (25 +/- 4 years, 65 +/- 4 mL O-2.kg(-1).min(-1)) performed four self-paced sprint time-trials (STT 1-4) lasting approximate to 4 min each (STT 1-4) and separated by 45 min of recovery; while 19 triathletes and road cyclists (25 +/- 4 years, 65 +/- 5 mL O-2.kg(-1).min(-1)) completed 4 weeks of endurance training in combination with three sessions of high-intensity interval cycling per week. Release (mu mol.g(-1)prot.min(-1)) and uptake [tau (s)] of Ca(2+)by SR vesicles isolated from m.triceps brachiiand m.vastus lateraliswere determined before and after STT 1 and 4 in the skiers and in m.vastus lateralisbefore and after the 4 weeks of training in the endurance athletes. The Ca(2+)release rate was reduced by 17-18% in both limbs already after STT 1 (arms: 2.52 +/- 0.74 to 2.08 +/- 0.60; legs: 2.41 +/- 0.45 to 1.98 +/- 0.51,P< 0.0001) and attenuated further following STT 4 (arms: 2.24 +/- 0.67 to 1.95 +/- 0.45; legs: 2.13 +/- 0.51 to 1.83 +/- 0.36,P< 0.0001). Also, there was a tendency toward an impairment in the SR Ca(2+)uptake from pre STT1 to post STT4 in both arms and legs (arms: from 22.0 +/- 3.7 s to 25.3 +/- 6.0 s; legs: from 22.5 +/- 4.7 s to 25.5 +/- 7.7 s,P= 0.05). Endurance training combined with high-intensity exercise increased the Ca(2+)release rate by 9% (1.76 +/- 0.38 to 1.91 +/- 0.44,P= 0.009), without altering the Ca(2+)uptake (29.6 +/- 7.0 to 29.1 +/- 8.7 s;P= 0.98). In conclusion, the Ca(2+)release and uptake rates by SR in exercising limbs of highly trained athletes declines gradually by repetitive bouts of high-intensity exercise. We also demonstrate, for the first time, that the SR Ca(2+)release rate can be enhanced by a specific program of training in highly trained athletes, which may have important implications for performance parameters.
  •  
2.
  • Gejl, Kasper Degn, et al. (författare)
  • No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes
  • 2017
  • Ingår i: Medicine & Science in Sports & Exercise. - 0195-9131 .- 1530-0315. ; 49:12, s. 2486-2497
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The present study investigated the effects of periodic carbohydrate (CHO) restriction on endurance performance and metabolic markers in elite endurance athletes. Methods Twenty-six male elite endurance athletes (maximal oxygen consumption (VO2max), 65.0 mL O(2)kg(-1)min(-1)) completed 4 wk of regular endurance training while being matched and randomized into two groups training with (low) or without (high) CHO manipulation 3 dwk(-1). The CHO manipulation days consisted of a 1-h high-intensity bike session in the morning, recovery for 7 h while consuming isocaloric diets containing either high CHO (414 2.4 g) or low CHO (79.5 1.0 g), and a 2-h moderate bike session in the afternoon with or without CHO. VO2max, maximal fat oxidation, and power output during a 30-min time trial (TT) were determined before and after the training period. The TT was undertaken after 90 min of intermittent exercise with CHO provision before the training period and both CHO and placebo after the training period. Muscle biopsies were analyzed for glycogen, citrate synthase (CS) and -hydroxyacyl-coenzyme A dehydrogenase (HAD) activity, carnitine palmitoyltransferase (CPT1b), and phosphorylated acetyl-CoA carboxylase (pACC). Results The training effects were similar in both groups for all parameters. On average, VO2max and power output during the 30-min TT increased by 5% +/- 1% (P < 0.05) and TT performance was similar after CHO and placebo during the preload phase. Training promoted overall increases in glycogen content (18% +/- 5%), CS activity (11% +/- 5%), and pACC (38% +/- 19%; P < 0.05) with no differences between groups. HAD activity and CPT1b protein content remained unchanged. Conclusions Superimposing periodic CHO restriction to 4 wk of regular endurance training had no superior effects on performance and muscle adaptations in elite endurance athletes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy