SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Geml J.) "

Sökning: WFRF:(Geml J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tedersoo, L., et al. (författare)
  • The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
  • 2021
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 111, s. 573-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
  •  
2.
  • He, M. Q., et al. (författare)
  • Notes, outline and divergence times of Basidiomycota
  • 2019
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 99, s. 105-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya, classes are 211-383 Mya, and orders are 99-323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27-178 Mya, Pucciniomycotina from 85-222 Mya, and Ustilaginomycotina from 79-177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of theirphylogeny and evolution.
  •  
3.
  • Polme, S., et al. (författare)
  • FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles
  • 2020
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 105:1, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.
  •  
4.
  • Lodge, D.J., et al. (författare)
  • Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)
  • 2014
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 64, s. 1-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygro- phoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe, Chromosera, Chrysomphalina, Cora, Corella, Cuphophyllus, Cyphellostereum, Dictyonema, Eonema, Gliophorus, Haasiella, Humidicutis, Hygroaster, Hygrocybe, Hygrophorus, Lichenomphalia, Neohygrocybe, Porpolomopsis and Pseudoarmillariella. A new genus that is sister to Chromosera is described as Gloioxanthomyces. Revisions were made at the ranks of subfamily, tribe, genus, subgenus, section and subsection. We present three new subfamilies, eight tribes (five new), eight subgenera (one new, one new combination and one stat. nov.), 26 sections (five new and three new combinations and two stat. nov.) and 14 subsections (two new, two stat. nov.). Species of Chromosera, Gliophorus, Humidicutis, and Neohygrocybe are often treated within the genus Hygrocybe; we therefore provide valid names in both classification systems. We used a minimalist approach in transferring genera and creating new names and combinations. Consequently, we retain in the Hygrophoraceae the basal cuphophylloid grade comprising the genera Cuphophyllus, Ampulloclitocybe and Cantharocybe, despite weak phylogenetic support. We include Aeruginospora and Semiomphalina in Hygrophoraceae based on morphology though molecular data are lacking. The lower hygrophoroid clade is basal to Hygrophoraceae s.s., comprising the genera Aphroditeola, Macrotyphula, Phyllotopsis, Pleurocybella, Sarcomyxa, Tricholomopsis and Typhula.
  •  
5.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
6.
  • Merckx, Vincent S. F. T., et al. (författare)
  • Evolution of endemismon a young tropical mountain
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7565, s. 347-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical mountains are hot spots of biodiversity and endemism(1-3), but the evolutionary origins of their unique biotas are poorly understood(4). In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities(5). Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere(6). Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue'(7) in montane biodiversity hot spots under climate change scenarios.
  •  
7.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy