SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Geng Huifang) "

Sökning: WFRF:(Geng Huifang)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geng, Huifang, et al. (författare)
  • Controlled synthesis of highly stable lead-free bismuth halide perovskite nanocrystals : tructures and photophysics
  • 2023
  • Ingår i: SCIENCE CHINA Materials. - : Springer Science and Business Media LLC. - 2095-8226 .- 2199-4501. ; 66:5, s. 2079-2089
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, cesium bismuth halide perovskites have emerged as potential substitutes to their counterparts, cesium lead halide perovskites, owing to their low toxicity. However, the photophysics of cesium-bismuth halides nanocrystals (NCs) have not yet been fully rationalized because their structures remain highly debated. The ultraviolet-visible (UV-vis) absorption along with other photophysical properties such as the nature and lifetime of the excited states vary considerably across the previous reports. Here, we successfully synthesize pure Cs3BiBr6 and Cs3Bi2Br9 NCs via a modified hot-injection method, where the structure can be easily controlled by tuning the reaction temperature. The UV-vis absorption spectrum of the pure Cs3Bi2Br9 NCs features two characteristic peaks originating from the absorption of the first exciton and second exciton, respectively, which ultimately clarifies the debate in the previous reports. Using femtosecond transient absorption spectroscopy, we systematically investigate the excited state dynamics of the Cs3Bi2Br9 NCs and reveal that the photoexcited carriers undergo a self-trapping process within 3 ps after excitation. More intriguingly, the Cs3Bi2Br9 NCs prepared by this method show much better photostability than those prepared by the ligand-assisted reprecipitation process. Photodetectors based on these Cs3Bi2Br9 NCs show a sensitive light response, demonstrating the definite potential for breakthrough optoelectronic applications. [Figure not available: see fulltext.].
  •  
2.
  • Liu, Siyu, et al. (författare)
  • Probing the Multiexcitonic Dynamics in CsPbI3 Nanocrystals across the Temperature-Induced Reversible Phase Transitions
  • 2023
  • Ingår i: Advanced Energy Materials. - 1614-6832. ; 13:30
  • Tidskriftsartikel (refereegranskat)abstract
    • CsPbI3 nanocrystals (CPI NCs) have become a trending research topic due to their impressive potential in functional optoelectronic devices and optical gain applications. Their optical responses are governed by carrier dynamics, which is greatly influenced by temperature and corresponding phase structure due to the effects of inherently electron-phonon coupling. Notably, CPI NCs have been identified to adopt an unexpectedly stable cubic phase from room temperature to liquid helium temperature. Here, using in situ cryogenic electron diffraction measurements, it is unambiguously demonstrated that CPI NCs undergo consecutive cubic-tetragonal-orthorhombic phase transitions from 298 to 100 K. The corresponding temperature-dependent multiexcitonic dynamics are investigated in each phase by combining time-resolved photoluminescence and transient absorption spectroscopy. In addition to the temperature dependency, the lifetime of both excitons and biexcitons evidently depends on the phase structures of the CPI NCs, highlighting the crucial effect of crystal structure on the carrier dynamics. Moreover, the biexciton binding energy increases with higher crystal symmetry due to the decrease of the dielectric constant. The findings shed light on the structural phase transition and its relationship to the carrier dynamics in all-inorganic perovskite NCs, which provides critical insight into the structure-performance relationship in CPI NCs for promising applications in optoelectronic devices.
  •  
3.
  • An, Rui, et al. (författare)
  • Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:45, s. 39222-39227
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbI3 perovskite quantum dots (QDs) have attracted intense attention for their successful application in photovoltaics (PVs) and optoelectronics that are enabled by their superior absorption capability and great photoluminescence (PL) properties. However, their photostability remains a practical bottleneck and further optimization is highly desirable. Here, we studied the photostability of as-obtained colloidal CsPbI3 QDs suspended in hexane. We found that light illumination does induce photodegradation of CsPbI3 QDs. Steady-state spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and transient absorption spectroscopy verified that light illumination leads to detachment of the capping agent, collapse of the CsPbI3 QD surface, and finally aggregation of surface Pb0. Both dangling bonds containing surface and Pb0 serve as trap states causing PL quenching with a dramatic decrease of PL quantum yield. Our work provides a detailed insight about the correlation between the structural and photophysical consequences of the photodegradation process in CsPbI3 QDs and may lead to the optimization of such QDs toward device applications.
  •  
4.
  • Lin, Weihua, et al. (författare)
  • Combining two-photon photoemission and transient absorption spectroscopy to resolve hot carrier cooling in 2D perovskite single crystals : the effect of surface layer
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 10:44, s. 16751-16760
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate hot carrier (HC) cooling in two-dimensional (2D) perovskite single crystals by applying two complementary ultrafast spectroscopy techniques - transient absorption (TA) and time-resolved two-photon photoemission (TR-2PPE) spectroscopies. TR-2PPE directly maps the hot electron distribution and its dynamics in the conduction band to the detected photoelectron distribution. While TR-2PPE selectively probes the upper layer of the material, TA provides information on the whole bulk. Two cooling regimes are resolved in both techniques. The fast timescale of 100-200 fs is related to the electron scattering by longitudinal optical (LO) phonons and the slow timescale of 3-4 ps corresponds to the LO phonon relaxation. The HC cooling dynamic of TA measurement has faster initial stage and higher starting temperature for the slower stage than in TR-2PPE measurements. Conclusions about spatial sensitivity of the cooling dynamics across the 2D perovskite single crystals constitute valuable information that can guide the future development of HC solar cells and thermoelectric applications based on 2D perovskites.
  •  
5.
  • Liu, Cunming, et al. (författare)
  • Asynchronous Photoexcited Electronic and Structural Relaxation in Lead-Free Perovskites
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:33, s. 13074-13080
  • Tidskriftsartikel (refereegranskat)abstract
    • Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elemental-specific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2 - dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 μs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework. ©
  •  
6.
  • Meng, Jie, et al. (författare)
  • Optimizing the quasi-equilibrium state of hot carriers in all-inorganic lead halide perovskite nanocrystals through Mn doping : fundamental dynamics and device perspectives
  • 2022
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 13:6, s. 1734-1745
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)-acoustic phonon bandgap, (2) enhances the electron-LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier-phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron-LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping. This journal is
  •  
7.
  • Naumova, Maria A., et al. (författare)
  • Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum
  • 2020
  • Ingår i: The Journal of chemical physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.
  •  
8.
  • Naumova, Maria A., et al. (författare)
  • Nonadiabatic Charge Transfer within Photoexcited Nickel Porphyrins
  • 2024
  • Ingår i: Journal of Physical Chemistry Letters. - 1948-7185. ; 15:13, s. 3627-3638
  • Tidskriftsartikel (refereegranskat)abstract
    • Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through “hot” charge transfer down to the attosecond time scale.
  •  
9.
  • Naumova, Maria A., et al. (författare)
  • Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:6, s. 2133-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy