SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Georganaki Maria) "

Sökning: WFRF:(Georganaki Maria)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Hooren, Luuk, et al. (författare)
  • Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma.
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.
  •  
2.
  •  
3.
  •  
4.
  • Georganaki, Maria, et al. (författare)
  • Tumor endothelial cell up-regulation of IDO1 is an immunosuppressive feed-back mechanism that reduces the response to CD40-stimulating immunotherapy
  • 2020
  • Ingår i: Oncoimmunology. - : TAYLOR & FRANCIS INC. - 2162-4011 .- 2162-402X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CD40-stimulating immunotherapy can elicit potent anti-tumor responses by activating dendritic cells and enhancing T-cell priming. Tumor vessels orchestrate T-cell recruitment during immune response, but the effect of CD40-stimulating immunotherapy on tumor endothelial cells has not been evaluated. Here, we have investigated how tumor endothelial cells transcriptionally respond to CD40-stimulating immunotherapy by isolating tumor endothelial cells from agonistic CD40 mAb- or isotype-treated mice bearing B16-F10 melanoma, and performing RNA-sequencing. Gene set enrichment analysis revealed that agonistic CD40 mAb therapy increased interferon (IFN)-related responses in tumor endothelial cells, including up-regulation of the immunosuppressive enzyme Indoleamine 2, 3-Dioxygenase 1 (IDO1). IDO1 was predominantly expressed in endothelial cells within the tumor microenvironment, and its expression in tumor endothelium was positively correlated to T-cell infiltration and to increased intratumoral expression of IFN gamma. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFN gamma, but not in response to CD40-stimulation. Combining agonistic CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth in B16-F10 melanoma, associated with increased activation of tumor-infiltrating T-cells. Hereby, we show that the tumor endothelial cells up-regulate IDO1 upon CD40-stimulating immunotherapy in response to increased IFN gamma-secretion by T-cells, revealing a novel immunosuppressive feedback mechanism whereby tumor vessels limit T-cell activation.
  •  
5.
  •  
6.
  • Georganaki, Maria (författare)
  • Vascular targeting for enhanced cancer immunotherapy
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Induced angiogenesis and chronic inflammation are major components of tumor immunosuppression. The scope of this thesis is to understand the role of the vasculature in anti-tumor immunity and thereby to improve cancer immunotherapy.The anti-tumor effects of anti-angiogenic therapies range from vessel normalization to directly affecting immune responses. In Paper I, we demonstrate that VEGF, a major pro-angiogenic factor, inhibits TNFα-induced endothelial activation via interfering with the NF-κB pathway and suppressing T-cell chemoattractants. Sunitinib, an anti-angiogenic tyrosine kinase inhibitor targeting VEGFR2 signaling, enhanced T-cell recruitment and reverted endothelial cell anergy by upregulating pro-inflammatory cytokines in murine melanomas. Therefore, in Paper II, we study the anti-tumor potential of combining sunitinib treatment with CD40-stimulating immunotherapy. CD40 activation leads to increased anti-tumor T-cell responses. The combination therapy was superior in restricting tumor growth and enhancing survival, associated with decreased immunosuppression and increased endothelial activation leading to improved T-cell recruitment. In Paper III, RNA-sequencing reveals that tumor endothelial cells are capable of acquiring negative feedback mechanisms secondary to CD40 immunotherapy by upregulating immunosuppressive genes such as IDO1. Co-administration of agonistic CD40 antibody treatment with an IDO1 inhibitor delayed tumor growth, associated with increased intratumoral T-cell activation.In Paper IV, we investigate ELTD1, an orphan adhesion G protein-coupled receptor, which is upregulated in high-grade glioma vessels. ELTD1 deficiency did not affect developmental angiogenesis in mice but increased tumor growth. Interestingly, ELTD1 loss improved glioma vessel perfusion and reduced permeability and hypoxia. Thus, ELTD1 targeting may normalize tumor vessels, potentially enhancing drug delivery.In Paper V, we demonstrate that ectopic expression of specific cytokines in murine gliomas induces tertiary lymphoid organ- (TLO-) TLO-like structures in the brain. TLOs, mainly composed of T- and B-cell clusters and high endothelial venules, are onsite preservers of robust immune responses. In line with this, increased survival of mice with gliomas overexpressing either LT-αβ or LIGHT was associated with alleviated tumor immunosuppresion. This suggests that TLO-inducing agents may improve cancer immunotherapy for glioma treatment.Collectively, this thesis demonstrates that the tumor vasculature is crucial for anti-tumor immune responses and that vascular targeting can enhance cancer immunotherapy.
  •  
7.
  • Georganaki, Maria, et al. (författare)
  • Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Boosting natural immunity against malignant cells has had a major breakthrough in clinical cancer therapy. This is mainly due to the successful development of immune checkpoint blocking antibodies, which release a break on cytolytic anti-tumor-directed T-lymphocytes. However, immune checkpoint blockade is only effective for a proportion of cancer patients, and a major challenge in the field is to understand and overcome treatment resistance. Immune checkpoint blockade relies on successful trafficking of tumor-targeted T-lymphocytes from the secondary lymphoid organs, through the blood stream and into the tumor tissue. Resistance to therapy is often associated with a low density of T-lymphocytes residing within the tumor tissue prior to treatment. The recruitment of leukocytes to the tumor tissue relies on up-regulation of adhesion molecules and chemokines by the tumor vasculature, which is denoted as endothelial activation. Tumor vessels are often poorly activated due to constitutive pro-angiogenic signaling in the tumor microenvironment, and therefore constitute barriers to efficient leukocyte recruitment. An emerging possibility to enhance the efficiency of cancer immunotherapy is to combine pro-inflammatory drugs with anti-angiogenic therapy, which can enable tumor-targeted T-lymphocytes to access the tumor tissue by relieving endothelial anergy and increasing adhesion molecule expression. This would pave the way for efficient immune checkpoint blockade. Here, we review the current understanding of the biological basis of endothelial anergy within the tumor microenvironment, and discuss the challenges and opportunities of combining vascular targeting with immunotherapeutic drugs as suggested by data from key pre-clinical and clinical studies.
  •  
8.
  • Huang, Hua, 1986-, et al. (författare)
  • ELTD1-deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma.
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:3, s. 398-411
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels, and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood.METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1 -/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1-deletion on glioma immunity was determined by treating tumor bearing mice with PD-1-blocking antibodies.RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1-deletion, however, tumor vascular function was improved in ELTD1 -/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1 -/- mice. Consistent with an enhanced inflammatory response, ELTD1-deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade.CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggests that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.
  •  
9.
  •  
10.
  • Huang, Hua, et al. (författare)
  • VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation
  • 2015
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:1, s. 227-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiangiogenic treatment targeting the vascular endothelial growth factor (VEGF) signaling pathway is in clinical use, but its effect on vascular function and the tumor microenvironment is poorly understood. Here, we investigate cross-talk between VEGF and proinflammatory TNF-α signaling in endothelial cells and its impact on leukocyte recruitment. We found that cotreatment with VEGF decreased TNF-α-induced Jurkat cell adhesion to human microvascular endothelial cells by 40%. This was associated with inhibition of TNF-α-mediated regulation of 86 genes, including 2 T-lymphocyte-attracting chemokines, CXCL10 and CXCL11 [TNF-α concentration 1 ng/ml; 50% inhibition/inhibitory concentration (IC50) VEGF, 3 ng/ml]. Notably, VEGF directly suppressed TNF-α-induced gene expression through negative cross-talk with the NF-κB-signaling pathway, leading to an early decrease in IFN regulatory factor 1 (IRF-1) expression and reduced phosphorylation of signal transducer and activator of transcription 1 (p-Stat1) at later times. Inhibition of VEGF signaling in B16 melanoma tumor-bearing mice by sunitinib treatment resulted in up-regulation of CXCL10 and CXCL11 in tumor vessels, accompanied by up to 18-fold increased infiltration of CD3(+) T-lymphocytes in B16 tumors. Our results demonstrate a novel role of VEGF in negative regulation of NF-κB signaling and endothelial activation in the tumor microenvironment and provide evidence that pharmacological inhibition of VEGF signaling enhances T-lymphocyte recruitment through up-regulation of chemokines CXCL10 and CXCL11.-Huang, H., Langenkamp, E., Georganaki, M., Loskog, A., Fuchs, P. F., Dieterich, L. C., Kreuger, J., Dimberg, A. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation.
  •  
11.
  • Langenkamp, Elise, et al. (författare)
  • Elevated Expression of the C-Type Lectin CD93 in the Glioblastoma Vasculature Regulates Cytoskeletal Rearrangements That Enhance Vessel Function and Reduce Host Survival
  • 2015
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 75:21, s. 4504-4516
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma is an aggressive brain tumor characterized by an abnormal blood vasculature that is hyperpermeable. Here, we report a novel role for CD93 in regulating angiogenesis in this setting by modulating cell-cell and cell-matrix adhesion of endothelial cells. Tissue microarray analysis demonstrated that vascular expression of CD93 was correlated with poor survival in a clinical cohort of patients with high-grade astrocytic glioma. Similarly, intracranial growth in the GL261 mouse model of glioma was delayed significantly in CD93(-/-) hosts, resulting in improved survival compared with wild-type mice. This effect was associated with increased vascular permeability and decreased vascular perfusion of tumors, indicating reduced vessel functionality in the absence of CD93. RNAi-mediated attenuation of CD93 in endothelial cells diminished VEGF-induced tube formation in a three-dimensional collagen gel. CD93 was required for efficient endothelial cell migration and proper cell polarization in vitro. Further, in endothelial cells where CD93 was attenuated, decreased cell spreading led to a severe reduction in cell adhesion, a lack of proper cell contacts, a loss of VE-cadherin, and aberrant actin stress fiber formation. Our results identify CD93 as a key regulator of glioma angiogenesis and vascular function, acting via cytoskeletal rearrangements required for cell-cell and cell-matrix adhesion.
  •  
12.
  •  
13.
  • Niinivirta, Marjut, et al. (författare)
  • Tumor endothelial ELTD1 as a predictive marker for treatment of renal cancer patients with sunitinib
  • 2020
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Patients with metastatic renal cell cancer (mRCC) are commonly treated with the tyrosine kinase inhibitor sunitinib, which blocks signalling from vascular endothelial growth factor (VEGF) - and platelet-derived growth factor-receptors, inhibiting development of new blood vessels. There are currently no predictive markers available to select patients who will gain from this treatment. Epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) is up-regulated in tumor endothelial cells in many types of cancer and may be a putative predictive biomarker due to its association with ongoing angiogenesis.Methods: ELTD1, CD34 and VEGF receptor 2 (VEGFR2) expressions were analysed in tumor vessels of renal cancer tissues from 139 patients with mRCC using immunohistochemistry. Ninety-nine patients were treated with sunitinib as the first or second-line therapy. Early toxicity, leading to the termination of the treatment, eliminated 22 patients from the analyses. The remaining (n = 77) patients were included in the current study. In an additional analysis, 53 sorafenib treated patients were evaluated.Results: Patients with high ELTD1 expression in the tumor vasculature experienced a significantly better progression free survival (PFS) with sunitinib treatment as compared to patients with low ELTD1 expression (8 versus 5.5 months, respectively). The expression level of CD34 and VEGFR2 showed no correlation to sunitinib response. In sorafenib treated patients, no association with ELTD1 expression and PFS/OS was found.Conclusions: Our results identify tumor vessel ELTD1 expression as a positive predictive marker for sunitinib-treatment in patients suffering from mRCC. The negative results in the sorafenib treated group supports ELTD1 being a pure predictive and not a prognostic marker for sunitinib therapy.
  •  
14.
  • Ramachandran, Mohanraj, 1988-, et al. (författare)
  • Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma
  • 2023
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 41:6, s. 1134-1151
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted ad-eno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in aPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regres-sion upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.
  •  
15.
  • van Hooren, Luuk, et al. (författare)
  • Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:31, s. 50277-50289
  • Tidskriftsartikel (refereegranskat)abstract
    • CD40-activating immunotherapy has potent antitumor effects due to its ability to activate dendritic cells and induce cytotoxic T-cell responses. However, its efficacy is limited by immunosuppressive cells in the tumor and by endothelial anergy inhibiting recruitment of T-cells. Here, we show that combining agonistic CD40 monoclonal antibody (mAb) therapy with vascular targeting using the tyrosine kinase inhibitor sunitinib decreased tumor growth and improved survival in B16.F10 melanoma and T241 fibrosarcoma. Treatment of tumor-bearing mice with anti-CD40 mAb led to increased activation of CD11c(+) dendritic cells in the tumor draining lymph node, while sunitinib treatment reduced vessel density and decreased accumulation of CD11b(+)Gr1(+) myeloid derived suppressor cells. The expression of ICAM-1 and VCAM-1 adhesion molecules was up-regulated on tumor endothelial cells only when anti-CD40 mAb treatment was combined with sunitinib. This was associated with enhanced intratumoral infiltration of CD8(+) cytotoxic T-cells. Our results show that combining CD40-stimulating immunotherapy with sunitinib treatment exerts potent complementary antitumor effects mediated by dendritic cell activation, a reduction in myeloid derived suppressor cells and increased endothelial activation, resulting in enhanced recruitment of cytotoxic T-cells.
  •  
16.
  •  
17.
  • Zhang, Yanyu, et al. (författare)
  • Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis
  • 2020
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 80:16, s. 3345-3358
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet-derived growth factor B (PDGFB) plays a crucial role in recruitment of PDGF receptor b-positive pericytes to blood vessels. The endothelium is an essential source of PDGFB in this process. Platelets constitute a major reservoir of PDGFB and are continuously activated in the tumor microenvironment, exposing tumors to the plethora of growth factors contained in platelet granules. Here, we show that tumor vascular function, as well as pericyte coverage is significantly impaired in mice with conditional knockout of PDGFB in platelets. A lack of PDGFB in platelets led to enhanced hypoxia and epithelial-to-mesenchymal transition in the primary tumors, elevated levels of circulating tumor cells, and increased spontaneous metastasis to the liver or lungs in two mouse models. These findings establish a previously unknown role for platelet-derived PDGFB, whereby it promotes and maintains vascular integrity in the tumor microenvironment by contributing to the recruitment of pericytes. Significance: Conditional knockout of PDGFB in platelets demonstrates its previously unknown role in the maintenance of tumor vascular integrity and host protection against metastasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (10)
annan publikation (5)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Dimberg, Anna (16)
Essand, Magnus (6)
Lugano, Roberta (6)
Smits, Anja (5)
Pontén, Fredrik (4)
Ramachandran, Mohanr ... (4)
visa fler...
Betsholtz, Christer (3)
Huang, Hua, 1986- (3)
Ellmark, Peter (2)
Jakola, Asgeir Store (2)
Zhang, Lei (2)
He, Liqun (2)
Zetterling, Maria (2)
Ramachandran, Mohanr ... (2)
Bontell, Thomas Olss ... (2)
Fotaki, Grammatiki (2)
Uhlén, Mathias (1)
Enblad, Gunilla (1)
Lindskog, Cecilia (1)
Bergqvist, Michael (1)
Fredriksson, Irma (1)
Larsson, Elna-Marie (1)
Strand, Robin (1)
Westermark, Bengt (1)
Bazzar, Wesam (1)
Olsson, Anna-Karin (1)
Al-Jaff, Mohammed (1)
Libard, Sylwia (1)
Holland, Eric C. (1)
Alhuseinalkhudhur, A ... (1)
Yu, Di, 1985- (1)
Siegbahn, Agneta, 19 ... (1)
Edqvist, Per-Henrik (1)
Heldin, Carl-Henrik, ... (1)
Andrae, Johanna (1)
Dejana, Elisabetta (1)
Danfors, Torsten (1)
Lau, Joey, 1979- (1)
Karlsson, Mikael C I (1)
Kreuger, Johan (1)
Magnusson, Peetra U. (1)
Alitalo, Kari (1)
Uhrbom, Lene (1)
Ullenhag, Gustav (1)
Mangsbo, Sara, 1981- (1)
Mangsbo, Sara M., 19 ... (1)
Ulvmar, Maria H. (1)
Fredholm, Hanna (1)
Martikainen, Miika (1)
Mangsbo, Sara M. (1)
visa färre...
Lärosäte
Uppsala universitet (17)
Göteborgs universitet (4)
Karolinska Institutet (3)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy