SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gericke Sabrina M.) "

Sökning: WFRF:(Gericke Sabrina M.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gericke, Sabrina M., et al. (författare)
  • Effect of Different In2O3(111) Surface Terminations on CO2 Adsorption
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:38, s. 45367-45377
  • Tidskriftsartikel (refereegranskat)abstract
    • In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.
  •  
2.
  • Degerman, David, 1989-, et al. (författare)
  • Operando Observation of Oxygenated Intermediates during CO Hydrogenation on Rh Single Crystals
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:16, s. 7038-7042
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO hydrogenation reaction over the Rh(111) and (211) surfaces has been investigated operando by X-ray photoelectron spectroscopy at a pressure of 150 mbar. Observations of the resting state of the catalyst give mechanistic insight into the selectivity of Rh for generating ethanol from CO hydrogenation. This study shows that the Rh(111) surface does not dissociate all CO molecules before hydrogenation of the O and C atoms, which allows methoxy and other both oxygenated and hydrogenated species to be visible in the photoelectron spectra.
  •  
3.
  • Gericke, Sabrina M., et al. (författare)
  • Effect of Different In 2 O 3 (111) Surface Terminations on CO 2 Adsorption
  • 2023
  • Ingår i: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; 15:38, s. 45367-45377
  • Tidskriftsartikel (refereegranskat)abstract
    • In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.
  •  
4.
  • Koller, Volkmar, et al. (författare)
  • Critical Step in the HCl Oxidation Reaction over Single-Crystalline CeO2-x(111) : Peroxo-Induced Site Change of Strongly Adsorbed Surface Chlorine
  • 2023
  • Ingår i: ACS Catalysis. - 2155-5435. ; 13:19, s. 12994-13007
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalytic oxidation of HCl by molecular oxygen (Deacon process) over ceria allows the recovery of molecular chlorine from the omnipresent HCl waste produced in various industrial processes. In previous density functional theory (DFT) model-calculations by Amrute et al. [ J. Catal. 2012, 286, 287−297.], it was proposed that the most critical reaction step in this process is the displacement of tightly bound chlorine at a vacant oxygen position on the CeO2(111) surface (Clvac) toward a less strongly bound cerium on-top (Cltop) position. This step is highly endothermic by more than 2 eV. On the basis of a dedicated model study, namely the reoxidation of a chlorinated single-crystalline Clvac-CeO2-x(111)-(Formula Presented × Formula Presented)R30° surface structure, we provide in situ synchrotron-based spectroscopic data (high resolution core level spectroscopy (HRCLS) and X-ray adsorption near edge structure (XANES)) for this oxygen-induced dechlorination process. Combined with theoretical evidence from DFT calculations, the Clvac → Cltop displacement reaction is predicted to be induced by an adsorbed peroxo species (O22-), making the displacement step concerted and exothermic by 0.6 eV with an activation barrier of only 1.04 eV. The peroxo species is shown to be important for the reoxidation of Clvac-CeO2-x(111) and is considered essential for understanding the function of ceria in oxidation catalysis.
  •  
5.
  • Abb, Marcel J.S., et al. (författare)
  • Thermal Stability of Single-Crystalline IrO2(110) Layers : Spectroscopic and Adsorption Studies
  • 2020
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:28, s. 15324-15336
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of ultrathin single-crystalline IrO2(110) films with the gas phase proceeds via the coordinatively unsaturated sites (cus), in particular Ircus, the undercoordinated oxygen species on-top O (Oot) that are coordinated to Ircus, and bridging O (Obr). With the combination of different experimental techniques, such as thermal desorption spectroscopy, scanning tunneling microscopy (STM), high-resolution core-level spectroscopy (HRCLS), infrared spectroscopy, and first-principles studies employing density functional theory calculations, we are able to elucidate surface properties of single-crystalline IrO2(110). We provide spectroscopic fingerprints of the active surface sites of IrO2(110). The freshly prepared IrO2(110) surface is virtually inactive toward gas-phase molecules. The IrO2(110) surface needs to be activated by annealing to 500-600 K under ultrahigh vacuum (UHV) conditions. In the activation step, Ircus sites are liberated from on-top oxygen (Oot) and monoatomic Ir metal islands are formed on the surface, leading to the formation of a bifunctional model catalyst. Vacant Ircus sites of IrO2(110) allow for strong interaction and accommodation of molecules from the gas phase. For instance, CO can adsorb atop on Ircus and water forms a strongly bound water layer on the activated IrO2(110) surface. Single-crystalline IrO2(110) is thermally not very stable although chemically stable. Chemical reduction of IrO2(110) by extensive CO exposure at 473 K is not observed, which is in contrast to the prototypical RuO2(110) system.
  •  
6.
  • Baeumer, Christoph, et al. (författare)
  • Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis
  • 2021
  • Ingår i: Nature Materials. - : Springer Science and Business Media LLC. - 1476-1122 .- 1476-4660. ; 20:5, s. 674-682
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure–activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.
  •  
7.
  • Garcia-Martinez, Fernando, et al. (författare)
  • Reduced Carbon Monoxide Saturation Coverage on Vicinal Palladium Surfaces: The Importance of the Adsorption Site
  • 2021
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 12:39, s. 9508-9515
  • Tidskriftsartikel (refereegranskat)abstract
    • Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.
  •  
8.
  • Goodacre, Dana, et al. (författare)
  • Water adsorption on vanadium oxide thin films in ambient relative humidity
  • 2020
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption.
  •  
9.
  • Hu, Tianhao, et al. (författare)
  • Interaction of Anisole on Alumina-Supported Ni and Mo Oxide Hydrodeoxygenation Catalysts
  • 2023
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447. ; 127:39, s. 19440-19450
  • Tidskriftsartikel (refereegranskat)abstract
    • The conversion of biomass to transportation fuels and value-added chemicals is a promising method to reduce the reliance on fossil fuels. Mo-based catalysts have been shown to be highly active in the hydrodeoxygenation of biomass-derived phenolic compounds. The catalyst active phase, surface species, and the effect of adding additional metals are not comprehensively understood. Here we compare the temperature-dependent adsorption behavior of the model compound anisole on an alumina-supported mixed nickel molybdenum oxide catalyst with two reference catalysts, molybdenum oxide and nickel oxide. Raman spectroscopy showed that the catalysts contain significant amounts of molybdates and molybdoaluminates, in addition to NiMoO4 in the nickel molybdenum catalyst and MoO3 in the molybdenum-only catalyst. Using transmission infrared spectroscopy under a controlled environment, we find that anisole chemisorbed largely through the oxygen in the methoxy group to form surface-bound phenoxy and methoxy species on all of the catalysts. Ambient pressure X-ray photoelectron spectroscopy measurements of the catalysts in anisole vapor showed reduced Mo atoms are the binding sites. The surface interaction and removal temperature of these species varied with the metal composition. The MoOx component dominated the adsorption behavior in both MoOx and NiMoOx catalysts. The formation of new aromatics, including methylated rings, depended on the Ni composition. Upon the addition of hydrogen to induce the hydrodeoxygenation of anisole, undesirable polynuclear aromatic species were quickly formed on the Mo-based catalysts. These results suggest that the molybdenum oxide controls the adsorption and reactivity of the surface species with a cooperative effect by Ni.
  •  
10.
  • Pfaff, Sebastian, et al. (författare)
  • A Polycrystalline Pd Surface Studied by Two-Dimensional Surface Optical Reflectance during CO Oxidation : Bridging the Materials Gap
  • 2024
  • Ingår i: ACS applied materials & interfaces. - 1944-8244. ; 16:1, s. 444-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.
  •  
11.
  • Pfaff, Sebastian, et al. (författare)
  • Operando Reflectance Microscopy on Polycrystalline Surfaces in Thermal Catalysis, Electrocatalysis, and Corrosion
  • 2021
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:16, s. 19530-19540
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a microscope with a spatial resolution of 5 μm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.
  •  
12.
  • Rämisch, Lisa, et al. (författare)
  • Ambient pressure operando catalytic characterization by combining PM-IRRAS with planar laser-induced fluorescence and surface optical reflectance imaging
  • 2024
  • Ingår i: Catalysis Today. - 0920-5861. ; 427
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combination of optical operando techniques that allow us to bridge the pressure gap in heterogeneous catalysis. By combining Polarization Modulated - InfraRed Reflection Absorption Spectroscopy (PM-IRRAS) with two dimensional-Surface Optical Reflectance (2D-SOR) and Planar Laser Induced Fluorescence (PLIF), we can simultaneously measure the adsorbed species on the catalyst surface, monitor the surface oxide formation across the catalyst surface and image the gas phase right above the catalyst surface, respectively. In a single measurement, we are able to follow heterogeneous catalytic reactions temporally- and spatially resolved with all three optical techniques, which are additionally supported by Mass Spectrometry (MS). To validate the experimental setup, we perform two experiments studying CO oxidation on Pd(100) at 150 mbar and 910 mbar by ramping the sample temperature. PM-IRRAS and 2D-SOR reveal that the formation of well-defined ultrathin surface oxide coincides with the disappearance of CO adsorption on the surface. At the same time, PLIF and MS confirm the simultaneous transition into a mass-transfer-limited (MTL) regime. A difference between 150 and 910 mbar can be seen in the light-off temperature caused by different partial pressures of CO and in the spatial distribution of the gas cloud across the surface in space caused by gas diffusion. This emphasizes the need for spatially-resolved gas phase diagnostics in heterogeneous catalysis. The combination of all techniques aids our understanding of the gas-surface interaction.
  •  
13.
  • Rämisch, Lisa, et al. (författare)
  • Infrared surface spectroscopy and surface optical reflectance for operando catalyst surface characterization
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332. ; 578
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a new sample environment, the two operando surface diagnostic techniques two-dimensional surface optical reflection (2D-SOR) and polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS) have been combined with mass spectrometry (MS) to characterize a catalytic reaction. With both techniques integrated in a custom-built setup, we can correlate molecular information of the adsorbed surface species from PM-IRRAS with information about oxide formation on the sample from 2D-SOR. The new setup was evaluated by performing CO oxidation over a Palladium single crystal Pd(1 0 0) surface. The results reveal that the macroscopic and the microscopic molecular behavior correlate well. When the CO adsorption peak disappears in the PM-IRRAS spectrum, the formation of a well-defined ultra-thin surface oxide is observed in the 2D-SOR trend. We discuss the benefits and limitations of the two techniques as well as their potential for further studies of catalytic reactions at both gas–solid and liquid–solid interfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy