SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghara Raghunath) "

Sökning: WFRF:(Ghara Raghunath)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, Anshuman, et al. (författare)
  • 21-cm signal from the Epoch of Reionization : a machine learning upgrade to foreground removal with Gaussian process regression
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 527:3, s. 7835-7846
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, a Gaussian process regression (GPR)-based framework has been developed for foreground mitigation from data collected by the LOw-Frequency ARray (LOFAR), to measure the 21-cm signal power spectrum from the Epoch of Reionization (EoR) and cosmic dawn. However, it has been noted that through this method there can be a significant amount of signal loss if the EoR signal covariance is misestimated. To obtain better covariance models, we propose to use a kernel trained on the grizzly simulations using a Variational Auto-Encoder (VAE)-based algorithm. In this work, we explore the abilities of this machine learning-based kernel (VAE kernel) used with GPR, by testing it on mock signals from a variety of simulations, exploring noise levels corresponding to ≈10 nights (≈141 h) and ≈100 nights (≈1410 h) of observations with LOFAR. Our work suggests the possibility of successful extraction of the 21-cm signal within 2σ uncertainty in most cases using the VAE kernel, with better recovery of both shape and power than with previously used covariance models. We also explore the role of the excess noise component identified in past applications of GPR and additionally analyse the possibility of redshift dependence on the performance of the VAE kernel. The latter allows us to prepare for future LOFAR observations at a range of redshifts, as well as compare with results from other telescopes.
  •  
2.
  • Ghara, Raghunath, et al. (författare)
  • Astrophysical information from the Rayleigh-Jeans Tail of the CMB
  • 2022
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :3
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the explanations for the recent EDGES-LOW band 21 cm measurements of a strong absorption signal around 80 MHz is the presence of an excess radio background to the Cosmic Microwave Background (CMB). Such excess can be produced by the decay of unstable particles into small mass dark photons which have a non-zero mixing angle with electromagnetism. We use the EDGES-LOW band measurements to derive joint constraints on the properties of the early galaxies and the parameters of such a particle physics model for the excess radio background. A Bayesian analysis shows that a high star formation efficiency and X-ray emission of 4–7 × 1048 erg per solar mass in stars are required along with a suppression of star formation in halos with virial temperatures ≲ 2 × 104 K. The same analysis also suggests a 68 percent credible intervals for the mass of the decaying dark matter particles, it's lifetime, dark photon mass and the mixing angle of the dark and ordinary photon oscillation of [10-3.5, 10-2.4] eV, [101.1, 102.7] × 13.8 Gyr, [10-12.2, 10-10] eV and [10-7, 10-5.6] respectively. This implies an excess radio background which is ≈ 5.7 times stronger than the CMB around 80 MHz. This value is a factor ∼ 3 higher than the previous predictions which used a simplified model for the 21 cm signal.
  •  
3.
  • Ghara, Raghunath, et al. (författare)
  • Bayesian approach to constraining the properties of ionized bubbles during reionization
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 739-753
  • Tidskriftsartikel (refereegranskat)abstract
    • A possible way to study the reionization of cosmic hydrogen is by observing the large ionized regions (bubbles) around bright individual sources, e.g. quasars, using the redshifted 21 cm signal. It has already been shown that matched filter-based methods are not only able to detect the weak 21 cm signal from these bubbles but also aid in constraining their properties. In this work, we extend the previous studies to develop a rigorous Bayesian framework to explore the possibility of constraining the parameters that characterize the bubbles. To check the accuracy with which we can recover the bubble parameters, we apply our method on mock observations appropriate for the upcoming SKA1-low. For a region of size greater than or similar to 50 cMpc around a typical quasar at redshift 7, we find that approximate to 20 h of integration with SICA1-low will be able to constrain the size and location of the bubbles, as well as the difference in the neutral hydrogen fraction inside and outside the bubble, with < less than or similar to 10 per cent precision. The recovery of the parameters are more precise and the signal-to-noise ratio of the detected signal is higher when the bubble sizes are larger and their shapes are close to spherical. Our method can be useful in identifying regions in the observed field that contain large ionized regions and hence are interesting for following up with deeper integration times.
  •  
4.
  • Ghara, Raghunath, et al. (författare)
  • Constraining the intergalactic medium at z approximate to 9.1 using LOFAR Epoch of Reionization observations
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:4, s. 4728-4747
  • Tidskriftsartikel (refereegranskat)abstract
    • We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift approximate to 9.1 using new upper limits on the 21-cm power spectrum measured by the LOFAR radio telescope and a prior on the ionized fraction at that redshift estimated from recent cosmic microwave background (CMB) observations. We have used results from the reionization simulation code GRIZZLY and a Bayesian inference framework to constrain the parameters which describe the physical state of the IGM. We find that, if the gas heating remains negligible, an IGM with ionized fraction greater than or similar to 0.13 and a distribution of the ionized regions with a characteristic size greater than or similar to 8 h(-1) comoving megaparsec (Mpc) and a full width at half-maximum (FWHM) greater than or similar to 16 h(-1) Mpc is ruled out. For an IGM with a uniform spin temperature T-S greater than or similar to 3 K, no constraints on the ionized component can be computed. If the large-scale fluctuations of the signal are driven by spin temperature fluctuations, an IGM with a volume fraction less than or similar to 0.34 of heated regions with a temperature larger than CMB, average gas temperature 7-160 K, and a distribution of the heated regions with characteristic size 3.5-70 h(-1) Mpc and FWHM of less than or similar to 110 h(-1) Mpc is ruled out. These constraints are within the 95 per cent credible intervals. With more stringent future upper limits from LOFAR at multiple redshifts, the constraints will become tighter and will exclude an increasingly large region of the parameter space.
  •  
5.
  • Ghara, Raghunath, et al. (författare)
  • Constraining the state of the intergalactic medium during the Epoch of Reionization using MWA 21-cm signal observations
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 4551-4562
  • Tidskriftsartikel (refereegranskat)abstract
    • The Murchison Widefield Array (MWA) team has derived new upper limits on the spherically averaged power spectrum of the 21-cm signal at six redshifts in the range z approximate to 6.5-8.7. We use these upper limits and a Bayesian inference framework to derive constraints on the ionization and thermal state of the intergalactic medium (IGM) as well as on the strength of a possible additional radio background. We do not find any constraints on the state of the IGM for z greater than or similar to 7.8 if no additional radio background is present. In the presence of such a radio background, the 95 per cent credible intervals of the disfavoured models at redshift greater than or similar to 6.5 correspond to an IGM with a volume-averaged fraction of ionized regions below 0.6 and an average gas temperature less than or similar to 10(3) h(-1). In these models, the heated regions are characterized by a temperature larger than that of the radio background, and by a distribution with characteristic size less than or similar to 10 h(-1) Mpc and a full width at half maximum (FWHM) of less than or similar to 30 h(-1) Mpc. Within the same credible interval limits, we exclude an additional radio background of at least 0.008 per cent of the CMB at 1.42 GHz.
  •  
6.
  • Ghara, Raghunath, et al. (författare)
  • Impact of Ly α heating on the global 21-cm signal from the Cosmic Dawn
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:1, s. 634-644
  • Tidskriftsartikel (refereegranskat)abstract
    • The resonance scattering of Ly alpha photons with neutral hydrogen atoms in the intergalactic medium not only couples the spin temperature to the kinetic temperature but also leads to a heating of the gas. We investigate the impact of this heating on the average brightness temperature of the 21-cm signal from the Cosmic Dawn in the context of the claimed detection by the EDGES low-band experiment. We model the evolution of the global signal taking into account the Ly alpha coupling and heating and a cooling which can be stronger than the Hubble cooling. Using the claimed detection of a strong absorption signal at z approximate to 17 as a constraint, we find that a strong Ly alpha background is ruled out. Instead the results favour a weak Ly alpha background combined with an excess cooling mechanism which is substantially stronger than previously considered. We also show that the cooling mechanism driven by the interaction between millicharged baryons and dark matter particles no longer provides a viable explanation for the EDGES result when Ly alpha heating is taken into account.
  •  
7.
  • Ghara, Raghunath, et al. (författare)
  • Prediction of the 21-cm signal from reionization : comparison between 3D and 1D radiative transfer schemes
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:2, s. 1741-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional radiative transfer simulations of the epoch of reionization can produce realistic results, but are computationally expensive. On the other hand, simulations relying on one-dimensional radiative transfer solutions are faster but limited in accuracy due to their more approximate nature. Here, we compare the performance of the reionization simulation codes GRIZZLY and C-2-RAY which use 1D and 3D radiative transfer schemes, respectively. The comparison is performed using the same cosmological density fields, halo catalogues, and source properties. We find that the ionization maps, as well as the 21-cm signal maps from these two simulations are very similar even for complex scenarios which include thermal feedback on low-mass haloes. The comparison between the schemes in terms of the statistical quantities such as the power spectrum of the brightness temperature fluctuation agrees with each other within 10 per cent error throughout the entire reionization history. GRIZZLY seems to perform slightly better than the seminumerical approaches considered in Majumdar et al. which are based on the excursion set principle. We argue that GRIZZLY can be efficiently used for exploring parameter space, establishing observations strategies, and estimating parameters from 21-cm observations.
  •  
8.
  • Giri, Sambit K., et al. (författare)
  • Optimal identification of H II regions during reionization in 21-cm observations
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:4, s. 5596-5611
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of the future low-frequency component of the Square Kilometre Array radio telescope to produce tomographic images of the redshifted 21-cm signal will enable direct studies of the evolution of the sizes and shapes of ionized regions during the Epoch of Reionization. However, a reliable identification of ionized regions in noisy interferometric data is not trivial. Here, we introduce an image processing method known as superpixels for this purpose. We compare this method with two other previously proposed ones, one relying on a chosen threshold and the other employing automatic threshold determination using the K-Means algorithm. We use a correlation test and compare power spectra and bubble size distributions to show that the superpixels method provides a better identification of ionized regions, especially in the case of noisy data. We also describe some possible additional applications of the superpixel method, namely the derivation of the ionization history and constraints on the source properties in specific regions.
  •  
9.
  • Giri, Sambit K., 1993-, et al. (författare)
  • Position-dependent power spectra of the 21-cm signal from the epoch of reionization
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The 21-cm signal from the epoch of reionization is non-Gaussian. Current radio telescopes are focused on detecting the 21-cm power spectrum, but in the future the Square Kilometre Array is anticipated to provide a first measurement of the bispectrum. Previous studies have shown that the position-dependent power spectrum is a simple and efficient way to probe the squeezed-limit bispectrum. In this approach, the survey is divided into subvolumes and the correlation between the local power spectrum and the corresponding mean density of the subvolume is computed. This correlation is equivalent to an integral of the bispectrum in the squeezed limit, but is much simpler to implement than the usual bispectrum estimators. It also has a clear physical interpretation: it describes how the small-scale power spectrum of tracers such as galaxies and the 21-cm signal respond to a large-scale environment. Reionization naturally couples large and small scales as ionizing radiation produced by galactic sources can travel up to tens of Megaparsecs through the intergalactic medium during this process. Here we apply the position-dependent power spectrum approach to fluctuations in the 21-cm background from reionization. We show that this statistic has a distinctive evolution in time that can be understood with a simple analytic model. We also show that the statistic can easily distinguish between simple "inside-out" and "outside-in" models of reionization. The position-dependent power spectrum is thus a promising method to validate the reionization signal and to extract higher-order information on this process.
  •  
10.
  • Greig, Bradley, et al. (författare)
  • Interpreting LOFAR 21-cm signal upper limits at z ≈ 9.1 in the context of high-z galaxy and reionization observations
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the latest upper limits on the 21-cm power spectrum at z approximate to 9.1 from the Low Frequency Array (LOFAR), we explore the regions of parameter space which are inconsistent with the data. We use 21CMMC, a Monte Carlo Markov chain sampler of 21CMFAST which directly forward models the three dimensional (3D) cosmic 21-cm signal in a fully Bayesian framework. We use the astrophysical parametrization from 21CMFAST, which includes mass-dependent star formation rates and ionizing escape fractions as well as soft-band X-ray luminosities to place limits on the properties of the high-z galaxies. Further, we connect the disfavoured regions of parameter space with existing observational constraints on the Epoch of Reionization such as ultra-violet (UV) luminosity functions, background UV photoionization rate, intergalactic medium (IGM) neutral fraction, and the electron scattering optical depth. We find that all models exceeding the 21-cm signal limits set by LOFAR at z approximate to 9.1 are excluded at greater than or similar to 2 sigma by other probes. Finally, we place limits on the IGM spin temperature from LOFAR, disfavouring at 95 per cent confidence spin temperatures below similar to 2.6 K across an IGM neutral fraction range of 0.15 less than or similar to (x) over bar (HI) less than or similar to 0.6. Note, these limits are only obtained from 141 h of data in a single redshift bin. With tighter upper limits, across multiple redshift bins expected in the near future from LOFAR, more viable models will be ruled out. Our approach demonstrates the potential of forward modelling tools such as 21CMMC in combining 21-cm observations with other high-z probes to constrain the astrophysics of galaxies.
  •  
11.
  • Islam, Nazma, et al. (författare)
  • Cosmological implications of the composite spectra of galactic X-ray binaries constructed using MAXI data
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 487:2, s. 2785-2796
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the long-term average spectral properties of galactic X-ray binaries in the energy range of 3-20 keV, using long-term monitoring data from MAXI-Gas Slit Camera (GSC). These long-term average spectra are used to construct separately the composite spectra of galactic high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs). These composite spectra can be described empirically with piece-wise power law with three components. X-rays from HMXBs are considered as important contributors to heating and ionization of neutral hydrogen in the intergalactic medium during the Epoch of Reionization. Using the above empirical form of the compositeHMXBspectra extrapolated to lower energies as an input, we have studied the impact of these sources on the 21-cm signal using the outputs of N-body simulation and 1D radiative transfer. The heating due to the composite spectrum is less patchy compared to power-law spectrum with a spectral index alpha = 1.5, used in previous studies. The amplitude of the heating peak of large-scale power spectrum, when plotted as a function of the redshift, is less for the composite spectrum.
  •  
12.
  • Kamran, Mohd, et al. (författare)
  • Redshifted 21-cm bispectrum - II. Impact of the spin temperature fluctuations and redshift space distortions on the signal from the Cosmic Dawn
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:3, s. 3800-3813
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the 21-cm signal bispectrum (which quantifies the non-Gaussianity in the signal) from the Cosmic Dawn (CD). For our analysis, we have simulated the 21-cm signal using radiative transfer code GRIZZLY, while considering two types of sources (mini-QS05 and HMXBs) for Ly alpha coupling and the X-ray heating of the IGM. Using this simulated signal, we have, for the first time, estimated the CD 21-cm bispectra for all unique kappa-triangles and for a range of kappa modes. We observe that the redshift evolution of the bispectrum magnitude and sign follow a generic trend for both source models. However, the redshifts at which the bispectrum magnitude reaches their maximum and minimum values and show their sign reversal depends on the source model. When the Ly alpha coupling and the X-ray heating of the IGM occur simultaneously, we observe two consecutive sign reversals in the bispectra for small kappa-triangles (irrespective of the source models). One arising at the beginning of the IGM heating and the other at the end of Ly alpha-coupling saturation. This feature can be used in principle to constrain the CD history and/or to identify the specific CD scenarios. We also quantify the impact of the spin temperature (T-S) fluctuations on the bispectra. We find that T-S fluctuations have maximum impact on the bispectrum magnitude for small k-triangles and at the stage when Ly alpha coupling reaches saturation. Furthermore, we are also the first to quantify the impact of redshift space distortions (RSD), on the CD bispectra. We find that the impact of RSD on the CD 21-cm bispectra is significant (> 20 per cent) and the level depends on the stages of the CD and the k-triangles for which the bispectra are being estimated.
  •  
13.
  • Ma, Qing-Bo, et al. (författare)
  • POLAR-I : linking the 21-cm signal from the epoch of reionization to galaxy formation
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 3284-3297
  • Tidskriftsartikel (refereegranskat)abstract
    • To self-consistently model galactic properties, reionization of the intergalactic medium, and the associated 21-cm signal, we have developed the algorithm polar by integrating the one-dimensional radiative transfer code grizzly with the semi-analytical galaxy formation code L-Galaxies 2020. Our proof-of-concept results are consistent with observations of the star formation rate history, UV luminosity function, and the CMB Thomson scattering optical depth. We then investigate how different galaxy formation models affect UV luminosity functions and 21-cm power spectra, and find that while the former are most sensitive to the parameters describing the merger of haloes, the latter have a stronger dependence on the supernovae feedback parameters, and both are affected by the escape fraction model.
  •  
14.
  • Mertens, F. G., et al. (författare)
  • Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z approximate to 9.1 from LOFAR
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:2, s. 1662-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • A new upper limit on the 21 cm signal power spectrum at a redshift of z approximate to 9.1 is presented, based on 141 h of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally weighted power spectrum inference. Previously seen 'excess power' due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of 0.25-0.45 MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-sigma upper limit of Delta(2)(21) < (73)(2) mK(2) at k = 0.075 h cMpc(-1) is found, an improvement by a factor approximate to 8 in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radiofrequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
  •  
15.
  • Mondal, Rajesh, et al. (författare)
  • Tight constraints on the excess radio background at z=9.1 from LOFAR
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4178-4191
  • Tidskriftsartikel (refereegranskat)abstract
    • The ARCADE2 and LWA1 experiments have claimed an excess over the cosmic microwave background (CMB) at low radio frequencies. If the cosmological high-redshift contribution to this radio background is between 0.1 per cent and 22 per cent of the CMB at 1.42 GHz, it could explain the tentative EDGES low-band detection of the anomalously deep absorption in the 21-cm signal of neutral hydrogen. We use the upper limit on the 21-cm signal from the Epoch of Reionization (z = 9.1) based on 141 h of observations with LOFAR to evaluate the contribution of the high-redshift Universe to the detected radio background. Marginalizing over astrophysical properties of star-forming haloes, we find (at 95 per cent CL) that the cosmological radio background can be at most 9.6 per cent of the CMB at 1.42 GHz. This limit rules out strong contribution of the high-redshift Universe to the ARCADE2 and LWA1 measurements. Even though LOFAR places limit on the extra radio background, excess of 0.1-9.6 per cent over the CMB (at 1.42 GHz) is still allowed and could explain the EDGES low-band detection. We also constrain the thermal and ionization state of the gas at z = 9.1, and put limits on the properties of the first star-forming objects. We find that, in agreement with the limits from EDGES high-band data, LOFAR data constrain scenarios with inefficient X-ray sources, and cases where the Universe was ionized by stars in massive haloes only.
  •  
16.
  • Nebrin, Olof, et al. (författare)
  • Fuzzy dark matter at cosmic dawn : new 21-cm constraints
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Potential small-scale discrepancies in the picture of galaxy formation painted by the Lambda CDM paradigm have led to considerations of modi fied dark matter models. One such dark matter model that has recently attracted much attention is fuzzy dark matter (FDM). In FDM models, the dark matter is envisaged to be an ultra-light scalar field with a particle mass m(FDM) similar to 10(-22) eV. This yields astronomically large de Broglie wavelengths which can suppress small-scale structure formation and give rise to the observed kpc-sized density cores in dwarf galaxies. We investigate the evolution of the 21-cm signal during Cosmic Dawn and the Epoch of Reionization (EoR) in Lambda FDM cosmologies using analytical models. The delay in source formation and the absence of small halos in Lambda FDM significantly postpone the Ly alpha coupling, heating, as well as the reionization of the neutral hydrogen of the intergalactic medium. As a result, the absorption feature in the evolution of the global 21-cm signal has a significantly smaller full width at half maximum (Delta z less than or similar to 3), than Lambda CDM (Delta z similar or equal to 6). This alone rules out mFDM < 6 x 10(-22) eV as a result of the 2 sigma lower limit Delta z greater than or similar to 4 from EDGES High-Band. As a result, Lambda FDM is not a viable solution to the potential small-scale problems facing Lambda CDM. Finally, we show that any detection of the 21-cm signal at redshifts z > 14 by interferometers such as the SKA can also exclude Lambda FDM models.
  •  
17.
  • Raut, Dinesh, et al. (författare)
  • Measuring the reionization 21 cm fluctuations using clustering wedges
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:1, s. 438-447
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the main challenges in probing the reionization epoch using the redshifted 21 cm line is that the magnitude of the signal is several orders smaller than the astrophysical foregrounds. One of the methods to deal with the problem is to avoid a wedge-shaped region in the Fourier k(perpendicular to) - k(parallel to) space which contains the signal from the spectrally smooth foregrounds. However, measuring the spherically averaged power spectrum using only modes outside this wedge (i.e. in the reionization window) leads to a bias. We provide a prescription, based on expanding the power spectrum in terms of the shifted Legendre polynomials, which can be used to compute the angular moments of the power spectrum in the reionization window. The prescription requires computation of the monopole, quadrupole, and hexadecapole moments of the power spectrum using the theoretical model under consideration and also the knowledge of the effective extent of the foreground wedge in the k(perpendicular to) - k(parallel to)plane. One can then calculate the theoretical power spectrum in the window which can be directly compared with observations. The analysis should have implications for avoiding any bias in the parameter constraints using 21 cm power spectrum data.
  •  
18.
  • Ross, Hannah E., et al. (författare)
  • Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 487:1, s. 1101-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • The upcoming radio interferometer Square Kilometre Array (SKA) is expected to directly detect the redshifted 21-cm signal from the neutral hydrogen present during the Cosmic Dawn. Temperature fluctuations from X-ray heating of the neutral intergalactic medium can dominate the fluctuations in the 21-cm signal from this time. This heating depends on the abundance, clustering, and properties of the X-ray sources present, which remain highly uncertain. We present a suite of three new large-volume, 349 Mpc a side, fully numerical radiative transfer simulations including QSO-like sources, extending the work previously presented in Ross et al. (2017). The results show that our QSOs have a modest contribution to the heating budget, yet significantly impact the 21-cm signal. Initially, the power spectrum is boosted on large scales by heating from the biased QSO-like sources, before decreasing on all scales. Fluctuations from images of the 21-cm signal with resolutions corresponding to SKA1-Low at the appropriate redshifts are well above the expected noise for deep integrations, indicating that imaging could be feasible for all the X-ray source models considered. The most notable contribution of the QSOs is a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. However, in the case of late Lyman-alpha saturation, this non-Gaussianity could be dramatically decreased particularly when heating occurs earlier. We conclude that increased non-Gaussianity is a promising signature of rare X-ray sources at this time, provided that Lyman-a saturation occurs before heating dominates the 21-cm signal.
  •  
19.
  • Ross, Hannah E., et al. (författare)
  • Redshift-space distortions in simulations of the 21-cm signal from the cosmic dawn
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:3, s. 3717-3733
  • Tidskriftsartikel (refereegranskat)abstract
    • The 21-cm signal from the Cosmic Dawn (CD) is likely to contain large fluctuations, with the most extreme astrophysical models on the verge of being ruled out by observations from radio interferometers. It is therefore vital that we understand not only the astrophysical processes governing this signal, but also other inherent processes impacting the signal itself, and in particular line-of-sight effects. Using our suite of fully numerical radiative transfer simulations, we investigate the impact on the redshifted 21-cm from the CD from one of these processes, namely the redshift-space distortions (RSDs). When RSDs are added, the resulting boost to the power spectra makes the signal more or equally detectable for our models for all redshifts, further strengthening hopes that a power spectra measurement of the CD will be possible. RSDs lead to anisotropy in the signal at the beginning and end of the CD, but not while X-ray heating is underway. The inclusion of RSDs, however, decreases detectability of the non-Gaussianity of fluctuations from inhomogeneous X-ray heating as measured by the skewness and kurtosis. On the other hand, mock observations created from all our simulations that include telescope noise corresponding to 1000 h of observation with the Square Kilometre Array telescope show that we may be able to image the CD for all heating models considered and suggest RSDs dramatically boost fluctuations coming from the inhomogeneous Ly α background.
  •  
20.
  • Shaw, Abinash Kumar, et al. (författare)
  • Studying the multifrequency angular power spectrum of the cosmic dawn 21-cm signal
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:2, s. 2188-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-cone (LC) anisotropy arises due to cosmic evolution of the cosmic dawn (CD) 21-cm signal along the line-of-sight (LoS) axis of the observation volume. The LC effect makes the signal statistically non-ergodic along the LoS axis. The multifrequency angular power spectrum (MAPS) provides an unbiased alternative to the popular three-dimensional (3D) power spectrum as it does not assume statistical ergodicity along every direction in the signal volume. Unlike the 3D power spectrum which mixes the cosmic evolution of the 21-cm signal along the LoS k modes, MAPS keeps the evolution information disentangled. Here, we first study the impact of different underlying physical processes during CD on the behaviour of the 21-cm MAPS using simulations of various different scenarios and models. We also make error predictions in 21-cm MAPS measurements considering only the system noise and cosmic variance for mock observations of Hydrogen Epoch of Reionization Array (HERA), NenuFAR, and SKA-Low. We find that 100 h of HERA observations will be able to measure 21-cm MAPS at >= 3 sigma for <= 1000 with 0. 1 MHz channel-width. The better sensitivity of SKA-Low allows reaching this sensitivity up to <= 3000. Note that due to the difference in the frequency coverage of the various experiments, the CD-epoch of reionization model considered for NenuFAR is different than those used for the HERA and SKA-Low predictions. Considering NenuFAR with the new model, measurements >= 2 sigma are possible only for <= 600 with 0. 2 MHz channel-width and for a 10 times longer observation time of t (obs) = 1000 h. However, for the range 300 <= <= 600 and t obs = 1000 h more than 3smeasurements are still possible for NenuFAR when combining consecutive frequency channels within a 5 MHz band.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy