SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gidlof S.) "

Sökning: WFRF:(Gidlof S.)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Solders, M., et al. (författare)
  • MAIT cells accumulate in placental intervillous space and display a highly cytotoxic phenotype upon bacterial stimulation
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • During pregnancy, the maternal immune system must tolerate the developing foetus, and yet retain a potent antimicrobial response to prevent infections. Mucosal associated invariant T (MAIT) cells recognize microbial-derived vitamin B metabolites presented on the MR1 molecule, but their presence and function at the foetal-maternal interface is not known. We here isolated mononuclear cells from paired samples of peripheral blood (PB), intervillous blood (IVB), and decidua parietalis (DP) following uncomplicated term pregnancies. Interestingly, MAIT cells were highly enriched in IVB compared to PB and DP. The activation status of IVB MAIT cells was similar to that of PB MAIT cells, except for a lower expression of PD-1. Both IVB MAIT cells and conventional T cells were more dominated by an effector memory phenotype compared to PB MAIT cells and T cells. IVB MAIT cells also responded more vigorously with expression of IFN-gamma, granzyme B, and perforin in response to Escherichia coli stimulation compared to PB. MR1 was not expressed in syncytiotrophoblasts, but in placental villous and decidual macrophages. These data indicate that maternal MAIT cells accumulate in the intervillous space of the placenta and that they are highly armed to quickly respond if bacteria are encountered at the foetal-maternal interface.
  •  
6.
  • Strunz, B., et al. (författare)
  • Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy
  • 2021
  • Ingår i: Science Immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 6:56
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune cell differentiation is critical for adequate tissue-specific immune responses to occur. Here, we studied differentiation of human uterine natural killer cells (uNK cells). These cells reside in a tissue undergoing constant regeneration and represent the major leukocyte population at the maternal-fetal interface. However, their physiological response during the menstrual cycle and in pregnancy remains elusive. By surface proteome and transcriptome analysis as well as using humanized mice, we identify a differentiation pathway of uNK cells in vitro and in vivo with sequential acquisition of killer cell immunoglobulin-like receptors and CD39. uNK cell differentiation occurred continuously in response to the endometrial regeneration and was driven by interleukin-15. Differentiated uNK cells displayed reduced proliferative capacity and immunomodulatory function including enhanced angiogenic capacity. By studying human uterus transplantation and monozygotic twins, we found that the uNK cell niche could be replenished from circulation and that it was under genetic control. Together, our study uncovers a continuous differentiation pathway of human NK cells in the uterus that is coupled to profound functional changes in response to local tissue regeneration and pregnancy.
  •  
7.
  •  
8.
  •  
9.
  • Abomaray, F, et al. (författare)
  • Mesenchymal Stromal Cells Are More Immunosuppressive In Vitro If They Are Derived from Endometriotic Lesions than from Eutopic Endometrium
  • 2017
  • Ingår i: Stem cells international. - : Hindawi Limited. - 1687-966X .- 1687-9678. ; 2017, s. 3215962-
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is an inflammatory disease with predominance of immunosuppressive M2 macrophages in the pelvic cavity that could be involved in the pathology through support and immune escape of ectopic lesions. Mesenchymal stromal cells (MSC) are found in ectopic lesions, and MSC from nonendometriosis sources are known to induce M2 macrophages. Therefore, MSC were hypothesized to play a role in the pathology of endometriosis. The aim was to characterize the functional phenotype of MSC in ectopic and eutopic endometrium from women with endometriosis. Stromal cells from endometriotic ovarian cysts (ESCcyst) and endometrium (ESCendo) were examined if they exhibited a MSC phenotype. Then, ESC were phenotypically examined for protein and gene expression of immunosuppressive and immunostimulatory molecules. Finally, ESC were functionally examined for their effects on monocyte differentiation into macrophages. ESCcystand ESCendoexpressed MSC markers, formed colonies, and differentiated into osteoblasts and adipocytes. Phenotypically, ESCcystwere more immunosuppressive, with significantly higher expression of immunosuppressive molecules. Functionally, ESCcystinduced more spindle-shaped macrophages, with significantly higher expression of CD14 and CD163, both features of M2 macrophages. The results suggest that ESCcystmay be more immunosuppressive than ESCendoand may promote immunosuppressive M2 macrophages that may support growth and reduce immunosurveillance of ectopic lesions.
  •  
10.
  • Abomaray, F, et al. (författare)
  • Mesenchymal Stromal Cells Support Endometriotic Stromal Cells In Vitro
  • 2018
  • Ingår i: Stem cells international. - : Hindawi Limited. - 1687-966X .- 1687-9678. ; 2018, s. 7318513-
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is an inflammatory disease marked by ectopic growth of endometrial cells. Mesenchymal stromal cells (MSC) have immunosuppressive properties that have been suggested as a treatment for inflammatory diseases. Therefore, the aim herein was to examine effects of allogeneic MSC on endometriosis-derived cellsin vitroas a potential therapy for endometriosis. MSC from allogeneic adipose tissue (Ad-MSC) and stromal cells from endometrium (ESCendo) and endometriotic ovarian cysts (ESCcyst) from women with endometriosis were isolated. The effects of Ad-MSC on ESCendoand ESCcystwere investigated usingin vitroproliferation, apoptosis, adhesion, tube formation, migration, and invasion assays. Ad-MSC significantly increased proliferation of ESC compared to untreated controls. Moreover, Ad-MSC significantly decreased apoptosis and increased survival of ESC. Ad-MSC significantly increased adhesion of ESCendoand not ESCcyston fibronectin. Conditioned medium from cocultures of Ad-MSC and ESC significantly increased tube formation of human umbilical vein endothelial cells on matrigel. Ad-MSC may significantly increase migration of ESCcystand did not increase invasion of both cell types. The data suggest that allogeneic Ad-MSC should not be considered as a potential therapy for endometriosis, because they may support the pathology by maintaining and increasing growth of ectopic endometrial tissue.
  •  
11.
  • Abomaray, F, et al. (författare)
  • The Effect of Mesenchymal Stromal Cells Derived From Endometriotic Lesions on Natural Killer Cell Function
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 612714-
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is an inflammatory disease that presents with ectopic endometriotic lesions. Reduced immunosurveillance of these lesions has been proposed to be playing a role in the pathology of endometriosis. Mesenchymal stromal cells (MSC) are found in ectopic lesions and may decrease immunosurveillance. In the present study, we examined if MSC contribute to reduced immunosurveillance through their immunosuppressive effects on natural killer (NK) cells. Stromal cells from endometriotic ovarian cysts (ESCcyst) and eutopic endometrium (ESCendo) of women with endometriosis and their conditioned medium were used in co-cultures with allogeneic peripheral blood NK cells. Following culture, NK cells were examined phenotypically for their expression of activating, inhibitory, maturation, and adhesion receptors and co-receptors, as well as the degranulation (CD107a) marker and the immunostimulatory (interferon-γ) and immunosuppressive (transforming growth factor beta 1 and interleukin-10) cytokines. Moreover, NK cell cytotoxicity was examined using chromium 51 release killing assays. There were no differences between ESCcyst and ESCendo regarding their effects on NK cell cytotoxicity in both conditioned medium and direct co-culture experiments. Additionally, there were no differences between ESCcyst and ESCendo regarding their impact on NK cells’ phenotype and degranulation in both conditioned medium and direct co-culture experiments. Although there were no differences found for DNAX accessory molecule-1 (DNAM-1) and NKp44, we found that the expression of the NK cell ligand CD155 that binds DNAM-1 and proliferating cell nuclear antigen (PCNA) that binds NKp44 was significantly less on ESCcyst than on ESCendo. These findings were not supported by the results that the expression of the known and unknown ligands on ESCcyst for DNAM-1 and NKp44 using chimeric proteins was not significantly different compared to ESCendo. In conclusion, the results suggest that ectopic MSC may not contribute to reduced immunosurveillance in endometriosis through their inhibitory effects on NK cells. This suggests that NK cell inhibition in the pelvic cavity of women with endometriosis develops due to other factors.
  •  
12.
  • Bister, J., et al. (författare)
  • Human endometrial MAIT cells are transiently tissue resident and respond toNeisseria gonorrhoeae
  • 2021
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219 .- 1935-3456. ; 14, s. 357-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucosa-associated invariant T (MAIT) cells are non-classical T cells important in the mucosal defense against microbes. Despite an increasing interest in the immunobiology of the endometrial mucosa, little is known regarding human MAIT cells in this compartment. The potential role of MAIT cells as a tissue-resident local defense against microbes in the endometrium is largely unexplored. Here, we performed a high-dimensional flow cytometry characterization of MAIT cells in endometrium from pre- and postmenopausal women, and in decidua from first-trimester pregnancies. Furthermore, we assessed MAIT cell function by stimulation withNeisseria gonorrhoeae(N. gonorrhoeae). Endometrial MAIT (eMAIT) cells represented a stable endometrial immune cell population as limited dynamic changes were observed during the menstrual cycle, post menopause, or in response to pregnancy. Furthermore, eMAIT cells exhibited an activated tissue-resident phenotype. Despite expressing CD69 and CD103, eMAIT cells were replenished over time by circulating MAIT cells, as assessed using human uterus transplantation as a model. Finally, functional experiments revealed the capability of MAIT cells to respond to the sexually transmitted and tissue-relevant pathogen,N. gonorrhoeae. In conclusion, our study provides novel insight into human MAIT cell dynamics and anti-microbial properties in the human uterus.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Gidlof, S (författare)
  • Improving women's health locally and globally
  • 2014
  • Ingår i: Acta obstetricia et gynecologica Scandinavica. - : Wiley. - 1600-0412 .- 0001-6349. ; 93:8, s. 725-726
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
18.
  •  
19.
  • Gidlof, S, et al. (författare)
  • Medical innovations are driven by controversies
  • 2022
  • Ingår i: Acta obstetricia et gynecologica Scandinavica. - : Wiley. - 1600-0412 .- 0001-6349. ; 101:6, s. 562-563
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Rudnicki, M, et al. (författare)
  • When endometriosis is the barrier for fertility
  • 2017
  • Ingår i: Acta obstetricia et gynecologica Scandinavica. - : Wiley. - 1600-0412 .- 0001-6349. ; 96:6, s. 621-622
  • Tidskriftsartikel (refereegranskat)
  •  
34.
  • Solders, M., et al. (författare)
  • Mature naive B cells are retained in the placental intervillous blood and positively associate with specific chemokines in full-term healthy pregnancy
  • 2019
  • Ingår i: American Journal of Reproductive Immunology. - : Wiley. - 1046-7408 .- 1600-0897. ; 82:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Problem Circulating B-cell numbers are lower during pregnancy compared with non-pregnant women, but the underlying reasons for this are unknown. Pregnancy-related hormones could influence B-cell lymphopoiesis in the bone marrow, but B cells may also be recruited to the placenta. To investigate the latter, we examined whether the proportions of total B cells and B cells at different maturational stages in placental intervillous blood (IVB) differ compared with peripheral blood (PB). Method of study From 23 paired samples of PB and IVB following full-term healthy pregnancies, total B cells and immature/transitional, mature/naive, and memory B cells were identified by flow cytometry. Chemokine levels in blood were analyzed using a Luminex assay. Placental explant-derived supernatant was assayed for B-cell chemotactic activity. Results The proportions of total B cells and mature/naive B cells were significantly higher in IVB relative to PB, while the fractions of immature/transitional cells and memory B cells were higher in PB. Multivariate factor analysis demonstrated that a specific chemokine profile in IVB, including CCL20, positively associated with higher proportions of mature/naive B cells in the intervillous space. All B cells expressed CCR6, the corresponding receptor for CCL20, but the intensity of CCR6 expression was significantly higher in mature/naive B cells relative to immature/transitional B cells. Migration assays showed that placental explant-derived supernatants attract B cells. Conclusion These results indicate that B cells, and mature/naive B cells in particular, are retained in the intervillous blood in response to certain chemokines produced by the placenta during late healthy pregnancy.
  •  
35.
  • Trifunovic, A, et al. (författare)
  • Creation of mtDNA mutator mice
  • 2004
  • Ingår i: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. - 0005-2728. ; 1657, s. 21-21
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
36.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy