SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gilbert Harry J.) "

Sökning: WFRF:(Gilbert Harry J.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
4.
  • Cartmell, Alan, et al. (författare)
  • The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases
  • 2011
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 286:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo-and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific alpha-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave alpha-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific alpha-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed beta-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for alpha-1,2-L-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.
  •  
5.
  • Abou-Hachem, Maher, et al. (författare)
  • Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus.
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:18, s. 5720-5729
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.
  •  
6.
  • Larsbrink, Johan, et al. (författare)
  • Structural and enzymatic characterization of a glycoside hydrolase family 31 alpha-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification
  • 2011
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 436, s. 567-580
  • Tidskriftsartikel (refereegranskat)abstract
    • The desire for improved methods of biomass conversion into fuels and feedstocks has re-awakened interest in the enzymology of plant cell wall degradation. The complex polysaccharide xyloglucan is abundant in plant matter, where it may account for up to 20% of the total primary cell wall carbohydrates. Despite this, few studies have focused on xyloglucan saccharification, which requires a consortium of enzymes including endo-xyloglucanases, alpha-xylosidases, beta-galactosidases and alpha-L-fucosidases, among others. In the present paper, we show the characterization of Xy131A, a key alpha-xylosidase in xyloglucan utilization by the model Gram-negative soil saprophyte Cellvibrio japonicus. CjXy131A exhibits high regiospecificity for the hydrolysis of XGOs (xylogluco-oligosaccharides), with a particular preference for longer substrates. Crystallographic structures of both the apo enzyme and the trapped covalent 5-fluoro-beta-xylosyl-enzyme intermediate, together with docking studies with the XXXG heptasaccharide, revealed, for the first time in GH31 (glycoside hydrolase family 31), the importance of PA14 domain insert in the recognition of longer oligosaccharides by extension of the active-site pocket. The observation that CjXy131A was localized to the outer membrane provided support for a biological model of xyloglucan utilization by C. japonicas, in which XGOs generated by the action of a secreted endo-xyloglucanase are ultimately degraded in close proximity to the cell surface. Moreover, the present study diversifies the toolbox of glycosidases for the specific modification and saccharification of cell wall polymers for biotechnological applications.
  •  
7.
  • McKee, Lauren, 1985-, et al. (författare)
  • Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATIONAL ACADEMY OF SCIENCES. - 0027-8424 .- 1091-6490. ; 109:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated beta-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed beta-propeller domain and a C-terminal beta-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.
  •  
8.
  • Montanier, Cedric, et al. (författare)
  • The Active Site of a Carbohydrate Esterase Displays Divergent Catalytic and Noncatalytic Binding Functions
  • 2009
  • Ingår i: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885. ; 7:3, s. 687-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing,'' where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.
  •  
9.
  • Montanier, Cedric Y., et al. (författare)
  • A novel, noncatalytic carbohydrate-binding module displays specificity for galactose-containing polysaccharides through calcium-mediated oligomerization
  • 2011
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 286:25
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to D-galactose and L-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing alpha- and beta-galactose residues, show that the ligand-binding site in the beta-sandwich protein is located in the loops that connect the two beta-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.
  •  
10.
  • Szatmari, Peter, et al. (författare)
  • Mapping autism risk loci using genetic linkage and chromosomal rearrangements.
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 319-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,168 families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
  •  
11.
  • Abou Hachem, Maher, et al. (författare)
  • Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase : Cloning, expression and binding studies
  • 2000
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021. ; 345:1, s. 53-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography. Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline cellulose. Binding to insoluble substrates was significantly enhanced by the presence of Na+ and Ca2+ ions. The binding affinities for soluble polysaccharides were tested by affinity electrophoresis; strong binding occurred with different xylans and β-glucan. CBM4-2 displayed a somewhat higher binding affinity than CBM4-1 for both soluble and insoluble substrates but both had similar specificities. Binding to short oligosaccharides was measured by NMR; both modules bound with similar affinities. The binding of the modules was shown to be dominated by enthalpic forces. The binding modules did not contribute with any significant synergistic effects on xylan hydrolysis when incubated with a Xyn10A catalytic module. This is the first report of family 4 CBMs with affinity for both insoluble xylan and amorphous cellulose.
  •  
12.
  • Gilbert, Harry J., et al. (författare)
  • How the walls come crumbling down : recent structural biochemistry of plant polysaccharide degradation
  • 2008
  • Ingår i: Current opinion in plant biology. - : Elsevier BV. - 1369-5266 .- 1879-0356. ; 11:3, s. 338-348
  • Forskningsöversikt (refereegranskat)abstract
    • The recent years have witnessed considerable developments in the interpretation of the three-dimensional structures of plant polysaccharide-degrading enzymes in the context of their functional specificity. A plethora of new structures of catalytic, carbohydrate-binding and protein-scaffolding modules involved in (hemi)cellulose catabolism has emerged in harness with sophisticated biochemical analysis. Despite significant advances, a full understanding of the intricacies of substrate recognition and catalysis by these diverse and specialised enzymes remains an important goal, especially if the application potential of these biocatalysts is to be fully realised.
  •  
13.
  •  
14.
  • Vardakou, Maria, et al. (författare)
  • Understanding the structural basis for substrate and inhibitor recognition in Eukaryotic GH11 Xylanases
  • 2008
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 375:5, s. 1293-1305
  • Tidskriftsartikel (refereegranskat)abstract
    • Endo-β1,4-xylanases (xylanases) hydrolyse the β1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown. Furthermore, the mechanism for the differences in the inhibition of fungal GH11 enzymes by the wheat protein XIP-I remains opaque. To address these issues we report the crystal structure and biochemical properties of the Neocallimastix patriciarum xylanase NpXyn11A, which displays unusually high catalytic activity and is one of the few fungal GH11 proteins not inhibited by XIP-I. Although the structure of NpXyn11A could not be determined in complex with substrates, we have been able to investigate how GH11 enzymes hydrolyse decorated substrates by solving the crystal structure of a second GH11 xylanase, EnXyn11A (encoded by an environmental DNA sample), bound to ferulic acid-1,5-arabinofuranose-α1,3-xylotriose (FAX3). The crystal structure of the EnXyn11A–FAX3 complex shows that solvent exposure of the backbone xylose O2 and O3 groups at subsites −3 and +2 allow accommodation of α1,2-linked 4-methyl-D-glucuronic acid and L-arabinofuranose side chains. Furthermore, the ferulated arabinofuranose side chain makes hydrogen bonds and hydrophobic interactions at the +2 subsite, indicating that the decoration may represent a specificity determinant at this aglycone subsite. The structure of NpXyn11A reveals potential −3 and +3 subsites that are kinetically significant. The extended substrate-binding cleft of NpXyn11A, compared to other GH11 xylanases, may explain why the Neocallimastix enzyme displays unusually high catalytic activity. Finally, the crystal structure of NpXyn11A shows that the resistance of the enzyme to XIP-I is not due solely to insertions in the loop connecting β strands 11 and 12, as suggested previously, but is highly complex.
  •  
15.
  • Cicortas Gunnarsson, Lavinia, et al. (författare)
  • Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module
  • 2007
  • Ingår i: Biochemical Journal. - : Portland Press. - 0264-6021 .- 1470-8728. ; 406, s. 209-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM42 from the Rhodothermits marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wildtype protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.
  •  
16.
  • de Jong, Roelof S., et al. (författare)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147
  • Konferensbidrag (refereegranskat)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
  •  
17.
  • Gilbert Gatty, Melina, 1986, et al. (författare)
  • Conformational Gating of Charge Separation in Porphyrin Oligomer-Fullerene Systems
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:50, s. 26482-26492
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of the photoinduced charge-separation in C-60-terminated butadiyne-linked porphyrin oligomers P-n (n = 4, 6) is strongly influenced by their molecular conformation. In these systems, the presence of the butadiyne linkers gives rise to a broad distribution of conformations in the ground state, due to an almost barrierless rotation of individual porphyrin units in the oligomer chain. The conformational states of these oligomers, either twisted or planar, could be selected by varying the excitation wavelength, thereby providing different initial excited states for charge separation. Charge separation in the different conformers was followed using both steady-state and 2D time-resolved emission using a streak camera system. Singular value decomposition (SVD) analysis applied on streak camera data provides here a powerful tool to study the conformational dependence of the charge separation in long PnC60 systems. Both the kinetics and spectral changes accompanying charge separation could be analyzed for different populations of conformation. From this analysis we show that, for both systems studied, twisted conformations undergo faster charge separation than planar conformations. This disparity in charge separation rates was ascribed mainly to the difference in driving force for charge separation between twisted and planar conformations. Charge separation was also studied in oligomers PnC60 coordinated to an octadentate ligand T8 that hinders the rotation of porphyrin subunits. The semicircular complexes PnC60-T8 show dramatic changes in their spectral properties, as well as slow excitation wavelength independent rate of charge separation and corresponding low efficiency compared to their linear counterparts. This slow charge separation rate was attributed to fast relaxation to the lowest excited vibronic state and lack of driving force for charge separation in these close to planar semicircular systems; i.e., the template systems behave like "normal" donor acceptor systems without slow conformational relaxation. This work illustrates how control of conformation can be used to tune the rate of charge separation.
  •  
18.
  • Gilbert Gatty, Melina, 1986, et al. (författare)
  • Hopping versus Tunneling Mechanism for Long-Range Electron Transfer in Porphyrin Oligomer Bridged Donor-Acceptor Systems
  • 2015
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 119:24, s. 7598-7611
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving long-range charge transport in molecular systems is interesting to foresee applications of molecules in practical devices. However, designing molecular systems with pre-defined wire-like properties remains difficult due to the lack of understanding of the mechanism for charge transfer. Here we investigate a series of porphyrin oligomer-bridged donor–acceptor systems Fc–Pn–C60 (n = 1–4, 6). In these triads, excitation of the porphyrin-based bridge generates the fully charge-separated state, Fc•+–Pn–C60•-, through a sequence of electron transfer steps. Temperature dependence of both charge separation (Fc–Pn*–C60 → Fc–Pn•+–C60•-) and recombination (Fc•+–Pn–C60•– → Fc–Pn–C60) processes was probed by time-resolved fluorescence and femtosecond transient absorption. In the long triads, two mechanisms contribute to recombination of Fc•+–Pn–C60•– to the ground state. At high temperatures (≥280 K), recombination via tunneling dominates for the entire series. At low temperatures (
  •  
19.
  • Vardakou, Maria, et al. (författare)
  • A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants
  • 2005
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 352:5, s. 1060-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylan, which is a key component of the plant cell wall, consists of a backbone of β-1,4-linked xylose residues that are decorated with arabinofuranose, acetyl, 4-O-methyl d-glucuronic acid and ferulate. The backbone of xylan is hydrolysed by endo-β1,4-xylanases (xylanases); however, it is unclear whether the various side-chains of the polysaccharide are utilized by these enzymes as significant substrate specificity determinants. To address this question we have determined the crystal structure of a family 10 xylanase from Thermoascus aurantiacus, in complex with xylobiose containing an arabinofuranosyl-ferulate side-chain. We show that the distal glycone subsite of the enzyme makes extensive direct and indirect interactions with the arabinose side-chain, while the ferulate moiety is solvent-exposed. Consistent with the 3D structural data, the xylanase displays fourfold more activity against xylotriose in which the non-reducing moiety is linked to an arabinose side-chain, compared to the undecorated form of the oligosacchairde. These data indicate that the sugar decorations of xylans in the T. aurantiacus family 10 xylanase, rather than simply being accommodated, can be significant substrate specificity determinants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy