SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giorgetti Sofia) "

Sökning: WFRF:(Giorgetti Sofia)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azinas, Stavros, et al. (författare)
  • D-strand perturbation and amyloid propensity in beta-2 microglobulin
  • 2011
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 278:13, s. 2349-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins hosting main β-sheets adopt specific strategies to avoid intermolecular interactions leading to aggregation and amyloid deposition. Human beta-2 microglobulin (β2m) displays a typical immunoglobulin fold and is known to be amyloidogenic in vivo. Upon severe kidney deficiency, β2m accumulates in the bloodstream, triggering, over the years, pathological deposition of large amyloid aggregates in joints and bones. A β-bulge observed on the edge D β-strand of some β2m crystal structures has been suggested to be crucial in protecting the protein from amyloid aggregation. Conversely, a straight D-strand, observed in different crystal structures of monomeric β2m, could promote amyloid aggregation. More recently, the different conformations observed for the β2m D-strand have been interpreted as the result of intrinsic flexibility, rather than being assigned to a functional protective role against aggregation. To shed light on such contrasting picture, the mutation Asp53→Pro was engineered in β2m, aiming to impair the formation of a regular/straight D-strand. Such a mutant was characterized structurally and biophysically by CD, X-ray crystallography and MS, in addition to an assessment of its amyloid aggregation trends in vitro. The results reported in the present study highlight the conformational plasticity of the edge D-strand, and show that even perturbing the D-strand structure through a Pro residue has only marginal effects on protecting β2m from amyloid aggregation in vitro.
  •  
2.
  • Canetti, Diana, et al. (författare)
  • Clinical ApoA-IV amyloid is associated with fibrillogenic signal sequence
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 311-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18-43 to p.20-43) in 16/24 trypsin-digested amyloid deposits but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20-43, and to a far lesser extent the N-terminal peptide, p.21-43, were fibrillogenic in vitro at physiological pH, generating Congo red-positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV-associated pathologies. (c) 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy