SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glette J.) "

Sökning: WFRF:(Glette J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fridell, F, et al. (författare)
  • Effect of hyperoxygenation on the susceptibility of Atlantic salmon (Salmo salar L.) to experimental challenge of IPN virus
  • 2007
  • Ingår i: Aquaculture. - : Elsevier BV. - 0044-8486. ; 270:1-4, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Intensive salmon smolt production normally includes reduced water flow and hyperoxygenation (added oxygen) of remaining water. There is little information on how different water quality parameters influence the fish health and the susceptibility to infectious diseases. The current experiment was carried out to evaluate if the combination of hyperoxygenation and reduced water flow (hyperoxic) can act as a chronic stressor to salmon in freshwater (FW) in such a way that it increases the susceptibility to IPN virus (IPNV) following seawater transfer. In FW, after 22 days of hyperoxic exposure plasma ion, TBARS and cortisol were measured. The cortisol levels were significantly (p = 0.011) higher in the hyperoxic group compared to controls maintained under normal oxygen saturation and water flow (normoxic), indicating chronic stress. Hyperoxygenation in FW caused decreased plasma [Cl−] compared to the normoxic group (p = 0.037), while [K+] tended to be higher in the hyperoxic group (p = 0.088). No significant differences were observed in plasma [Na+], total osmolality, TBARS or hematocrit, but there was a tendency towards a lower hct in the hyperoxic compared to the normoxic group. In SW the mortality was higher in the hyperoxic group challenged with IPNV (34%) compared to the normoxic group challenged with IPNV (20%) (p = 0.02), and no mortality was observed in the PBS injected fish. The challenged fish showed an overall increase in plasma cortisol day 8, 10, 12 and 14 post-challenge (p = 0.015, p = 0.000, p = 0.046 and p = 0.022 respectively). After SW transfer and challenge, plasma [K+] was elevated in both challenged groups, but no consistent trends were found for plasma [Cl−], [Na+] or total osmolality during the SW phase. There were no significant differences in the gene expression level of IFN 1α, Mx and IL 1β prior to challenge, suggesting that the basic expression level of these genes were not affected by hyperoxygenation. IPNV was detected in kidney and pylorus, by immunohistochemistry, cell culture, and RT-PCR in head kidney. This experiment indicates that chronic stress induced by a combination of low water flow and hyperoxygenation increases the susceptibility to IPNV challenge.
  •  
3.
  •  
4.
  • Jutfelt, Fredrik, 1975, et al. (författare)
  • The involvement of Aeromonas salmonicida virulence factors in bacterial translocation across the rainbow trout, Oncorhynchus mykiss (Walbaum), intestine.
  • 2008
  • Ingår i: Journal of fish diseases. - : Wiley. - 0140-7775. ; 31:2, s. 141-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathogenic bacterium Aeromonas salmonicida is the causative agent of furunculosis, a lethal disease in salmonids. The mode of lateral transmission has not been conclusively defined, but A. salmonicida is able to translocate across the intestinal epithelium of salmonids, making the intestinal route a probable candidate. This study investigated some of the virulence mechanisms used by the bacteria to promote translocation. Intestinal segments were placed in modified Ussing chambers to investigate epithelial functions during exposure to bacterial factors. The factors were: extracellular products (ECP), lipopolysaccharide (LPS) or live or heat-inactivated A. salmonicida. Fluorescein isothiocynate (FITC)-labelling enabled detection of translocated bacteria by fluorometry. Live A. salmonicida translocated to a greater degree than heat-inactivated bacteria, suggesting that the bacteria utilize a heat sensitive surface-bound virulence factor which promotes translocation. The epithelium was negatively affected by ECP, manifested as decreased net ion transport, indicating a disturbance in ion channels or cell metabolism. LPS did not affect the epithelium in vitro when administered on the luminal side of the intestinal segment, but significantly increased epithelial translocation of fluorescent bacterial-sized microspheres when administered on the serosal side. This is suggested to be caused by increased transcellular transport, as the paracellular permeability was unaffected indicating maintained epithelial integrity.
  •  
5.
  • Jutfelt, Fredrik, 1975, et al. (författare)
  • Translocation of viable Aeromonas salmonicida across the intestine of rainbow trout, Oncorhynchus mykiss (Walbaum)
  • 2006
  • Ingår i: Journal of Fish Diseases. - : Wiley. - 0140-7775 .- 1365-2761. ; 29:5, s. 255-262
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathogenic bacterium Aeromonas salmonicida is the causative agent of the destructive disease furunculosis in salmonids. Horizontal transmission in salmonids has been suggested to occur via the skin, gills and/or intestine. Previous reports are contradictory regarding the role of the intestine as a route of infection. The present study therefore investigates the possibility of bacterial translocation across intestinal epithelia using Ussing chamber technology, in vitro. Intestinal segments were exposed for 90 min to fluorescein isothiocyanate-labelled pathogenic A. salmonicida. Sampling from the serosal side of the Ussing chambers showed that bacteria were able to translocate across the intestinal epithelium in both the proximal and distal regions. Plating and subsequent colony counting showed that the bacteria were viable after translocation. During the 90 min exposure to A. salmonicida, the intestinal segments maintained high viability as measured by electrical parameters. The distal region responded to bacterial exposure by increasing the electrical resistance, indicating an increased mucus secretion. This study thus demonstrates translocation of live A. salmonicida through the intestinal epithelium of rainbow trout, suggesting that the intestine is a possible route of infection in salmonids.
  •  
6.
  • Ringø, Einar, et al. (författare)
  • Damaging effect of the fish pathogen Aeromonas salmonicida ssp salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.)
  • 2004
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 318:2, s. 305-312
  • Tidskriftsartikel (refereegranskat)abstract
    • In fish, bacterial pathogens can enter the host by one or more of three different routes: (a) skin, (b) gills and (c) gastrointestinal tract. Bacteria can cross the gastrointestinal lining in three different ways. In undamaged tissue, bacteria can translocate by transcellular or paracellular routes. Alternatively, bacteria can damage the intestinal lining with extracellular enzymes or toxins before entering. Using an in vitro (Ussing chamber) model, this paper describes intestinal cell damage in Atlantic salmon (Salmo salar L.) caused by the fish pathogen Aeromonas salmonicida ssp. salmonicida, the causative agent of furunculosis. The in vitro method clearly demonstrated substantial detachment of enterocytes from anterior region of the intestine (foregut) upon exposure to the pathogen. In the hindgut (posterior part of the intestine), little detachment was observed but cellular damage involved microvilli, desmosomes and tight junctions. Based on these findings, we suggest that A. salmonicida may obtain entry to the fish by seriously damaging the intestinal lining. Translocation of bacteria through the foregut (rather than the hindgut) is a more likely infection route for A. salmonicida infections in Atlantic salmon.
  •  
7.
  •  
8.
  • Sundh, Henrik, 1976, et al. (författare)
  • The effect of hyperoxygenation and reduced flow in fresh water and subsequent infectious pancreatic necrosis virus challenge in sea water, on the intestinal barrier integrity in Atlantic salmon, Salmo salar L
  • 2009
  • Ingår i: Journal of Fish Diseases. - 1365-2761. ; 32:8, s. 687-98
  • Tidskriftsartikel (refereegranskat)abstract
    • In high intensive fish production systems, hyperoxygenation and reduced flow are often used to save water and increase the holding capacity. This commonly used husbandry practice has been shown to be stressful to fish and increase mortality after infectious pancreatic necrosis virus (IPNV) challenge, but the cause and effect relationship is not known. Salmonids are particularly sensitive to stress during smoltification and the first weeks after seawater (SW) transfer. This work aimed at investigating the impact of hyperoxygenation combined with reduced flow in fresh water (FW), on the intestinal barrier in FW as well as during later life stages in SW. It further aims at investigating the role of the intestinal barrier during IPNV challenge and possible secondary infections. Hyperoxygenation in FW acted as a stressor as shown by significantly elevated plasma cortisol levels. This stressful husbandry condition tended to increase paracellular permeability (P(app)) as well as translocation of Aeromonas salmonicida in the posterior intestine of Atlantic salmon. After transfer to SW and subsequent IPNV challenge, intestinal permeability, as shown by P(app), and translocation rate of A. salmonicida increased in the anterior intestine, concomitant with further elevation in plasma cortisol levels. In the anterior intestine, four of five fish displayed alterations in intestinal appearance. In two of five fish, IPNV caused massive necrosis with significant loss of cell material and in a further two fish, IPNV caused increased infiltration of lymphocytes into the epithelium and granulocytes in the lamina propria. Hyperoxygenation and reduced flow in the FW stage may serve as stressors with impact mainly during later stages of development. Fish with an early history of hyperoxygenation showed a higher stress response concomitant with a disturbed intestinal barrier function, which may be a cause for the increased susceptibility to IPNV infection and increased susceptibility to secondary infections.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy