SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gloster Tracey M.) "

Search: WFRF:(Gloster Tracey M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gloster, Tracey M., et al. (author)
  • Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12
  • 2007
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:26, s. 19177-19189
  • Journal article (peer-reviewed)abstract
    • The plant cell wall is a complex material in which the cellulose microfibrils are embedded within a mesh of other polysaccharides, some of which are loosely termed hemicellulose. One such hemicellulose is xyloglucan, which displays a beta-1,4-linked D-glucose backbone substituted with xylose, galactose, and occasionally fucose moieties. Both xyloglucan and the enzymes responsible for its modification and degradation are finding increasing prominence, reflecting both the drive for enzymatic biomass conversion, their role in detergent applications, and the utility of modified xyloglucans for cellulose fiber modification. Here we present the enzymatic characterization and three-dimensional structures in ligand free and xyloglucan- oligosaccharide complexed forms of two distinct xyloglucanases from glycoside hydrolase families GH5 and GH12. The enzymes, Paenibacillus pabuli XG5 and Bacillus licheniformis XG12, both display open active center grooves grafted upon their respective (beta/alpha)(8) and beta-jelly roll folds, in which the side chain decorations of xyloglucan may be accommodated. For the beta-jelly roll enzyme topology of GH12, binding of xylosyl and pendant galactosyl moieties is tolerated, but the enzymeis similarly competent in the degradation of unbranched glucans. In the case of the (beta/alpha)(8) GH5 enzyme, kinetically productive interactions are made with both xylose and galactose substituents, as reflected in both a high specific activity on xyloglucan and the kinetics of a series of aryl glycosides. The differential strategies for the accommodation of the side chains of xyloglucan presumably facilitate the action of these microbial hydrolases in milieus where diverse and differently substituted substrates may be encountered.
  •  
2.
  • Machado, Teresa F. G., et al. (author)
  • Dissecting the Mechanism of (R)-3-Hydroxybutyrate Dehydrogenase by Kinetic Isotope Effects, Protein Crystallography, and Computational Chemistry
  • 2020
  • In: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 10:24, s. 15019-15032
  • Journal article (peer-reviewed)abstract
    • The enzyme (R)-3-hydroxybutyrate dehydrogenase (HBDH) catalyzes the enantioselective reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates, the monomeric precursors of biodegradable polyesters. Despite its application in asymmetric reduction, which prompted several engineering attempts of this enzyme, the order of chemical events in the active site, their contributions to limit the reaction rate, and interactions between the enzyme and non-native 3-oxocarboxylates have not been explored. Here, a combination of kinetic isotope effects, protein crystallography, and quantum mechanics/molecular mechanics (QM/MM) calculations were employed to dissect the HBDH mechanism. Initial velocity patterns and primary deuterium kinetic isotope effects establish a steady-state ordered kinetic mechanism for acetoacetate reduction by a psychrophilic and a mesophilic HBDH, where hydride transfer is not rate limiting. Primary deuterium kinetic isotope effects on the reduction of 3-oxovalerate indicate that hydride transfer becomes more rate limiting with this non-native substrate. Solvent and multiple deuterium kinetic isotope effects suggest hydride and proton transfers occur in the same transition state. Crystal structures were solved for both enzymes complexed to NAD(+):acetoacetate and NAD+:3-oxovalerate, illustrating the structural basis for the stereochemistry of the 3-hydroxycarboxylate products. QM/MM calculations using the crystal structures as a starting point predicted a higher activation energy for 3-oxovalerate reduction catalyzed by the mesophilic HBDH, in agreement with the higher reaction rate observed experimentally for the psychrophilic orthologue. Both transition states show concerted, albeit not synchronous, proton and hydride transfers to 3-oxovalerate. Setting the MM partial charges to zero results in identical reaction activation energies with both orthologues, suggesting the difference in activation energy between the reactions catalyzed by cold- and warm-adapted HBDHs arises from differential electrostatic stabilization of the transition state. Mutagenesis and phylogenetic analysis reveal the catalytic importance of His150 and Asn145 in the respective orthologues.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view