SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gold DR) "

Sökning: WFRF:(Gold DR)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fredriksson, Simon, 1973- (författare)
  • Proximity Ligation : Transforming protein analysis into nucleic acid detection through proximity-dependent ligation of DNA sequence tagged protein-binders
  • 2002
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A novel technology for protein detection, proximity ligation, has been developed along with improved methods for in situ synthesis of DNA microarrays. Proximity ligation enables a specific and quantitative transformation of proteins present in a sample into nucleic acid sequences. As pairs of so-called proximity probes bind the individual target protein molecules at distinct sites, these reagents are brought in close proximity. The probes consist of a protein specific binding part coupled to an oligonucleotide with either a free 3’- or 5’-end capable of hybridizing to a common connector oligonucleotide. When the probes are in proximity, promoted by target binding, then the DNA strands can be joined by enzymatic ligation. The nucleic acid sequence that is formed can then be amplified and quantitatively detected in a real-time monitored polymerase chain reaction. This convenient assay is simple to perform and allows highly sensitive protein detection. Parallel analysis of multiple proteins by DNA microarray technology is anticipated for proximity ligation and enabled by the information carrying ability of nucleic acids to define the individual proteins. Assays detecting cytokines using SELEX aptamers or antibodies, monoclonal and polyclonal, are presented in the thesis.Microarrays synthesized in situ using photolithographic methods generate impure products due to damaged molecules and interrupted synthesis. Through a molecular inversion mechanism presented here, these impurities may be removed. At the end of synthesis, full-length oligonucleotides receive a functional group that can then be made to react with the solid support forming an arched structure. The 3’-ends of the oligonucleotides are then cleaved, removing the impurities from the support and allowing the liberated 3’-hydroxyl to prime polymerase extension reactions from the inverted oligonucleotides. The effect of having pure oligonucleotides probes compared to ones contaminated with shorter variants was investigated in allele specific hybridization reactions. Pure probes were shown to have greater ability to discriminate between matched and singly mismatched targets at optimal hybridization temperatures.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Pettersson, Sofia, 1977- (författare)
  • Biodegradable gelatin microcarriers in tissue engineering : In vitro studies on cartilage and bone
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Tissue engineering is a multidisciplinary field that combines cells, biomaterial scaffolds and environmental factors to achieve functional tissue repair. This thesis focuses on the use of macroporous gelatin microcarriers as scaffolds in tissue engineering applications, with a special focus on cartilage and bone formation by human adult cells in vitro.In our first study, human articular chondrocytes were seeded on macroporous gelatin microcarriers. The microcarriers were subsequently encapsulated in coagulated blood-derived biological glues and cultured under free-swelling conditions for up to 17 weeks. Even in the absence of recombinant chondrogenic growth factors, the chondrocytes remained viable and metabolically active for the duration of the culture period, as indicated by an increased amount of cell nuclei and extracellular matrix (ECM). The ECM showed several cartilage characteristics, but lacked the cartilage specific collagen type II. Furthermore, ECM formation was seen primarily in a capsule surrounding the tissue-engineered constructs, leading to the conclusion that the used in vitro models were unable to support true cartilage formation.The capacity of human dermal fibroblasts to produce cartilage- and bone-like tissue in the previously mentioned model was also investigated. Under the influence of chondrogenic induction factors, including TGF-β1 and insulin, the fibroblasts produced cartilage specific molecules, as confirmed by indirect immunohistochemistry, however not collagen type II. Under osteogenic induction, by dexamethasone, ascorbate-2-phosphate and β–glycerophosphate, the fibroblasts formed a calcified matrix with bone specific markers, and an alkaline phosphatase assay corroborated a shift towards an osteoblast like phenotype. The osteogenic induction was enhanced by flow-induced shear stress in a spinner flask system.In addition, four different types of gelatin microcarriers, differing by their internal pore diameter and their degree of gelatin cross-linking, were evaluated for their ability to support chondrocyte expansion. Chondrocyte densities on the microcarriers were monitored every other day over a twoweek period, and chondrocyte growth was analyzed by piecewise linear regression and analysis of variance (ANOVA). No differences were seen between the different microcarriers during the first week. However, during the second week of culture both microcarrier pore diameter and gelatin crosslinking had significant impacts on chondrocyte density.Lastly, a dynamic centrifugation regime (f=12.5 mHz for 16 minutes every other day) was administered to chondrocyte-seeded microcarriers, with or without encapsulation in platelet rich plasma (PRP), to study the possible effect of dynamic stimuli on cartilage formation. Presence of PRP enhanced the structural stability of the tissue-engineered constructs, but we were not able to confirm any dose-response pattern between ECM formation and the applied forces. After 12 weeks, distinct gelatin degradation had occurred independent of both dynamic stimuli and presence of PRP.In summary, this thesis supports a plausible use for gelatin microcarriers in tissue engineering of cartilage and bone. Microcarrier characteristics, specifically gelatin cross-linking and pore diameter, have been shown to affect chondrocyte expansion. In addition, the use of human dermal fibroblasts as an alternative cell source for cartilage and bone formation in vitro was addressed.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy