SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goodrich K.) "

Sökning: WFRF:(Goodrich K.)

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  •  
2.
  •  
3.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
4.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
5.
  • Chasapis, A., et al. (författare)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
6.
  •  
7.
  • Le Contel, O., et al. (författare)
  • Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5943-5952
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave emission propagating toward the reconnection region with quasi-parallel and oblique wave angles is detected just before the opening of the magnetic field lines and the detection of escaping energetic electrons. Its source is likely the perpendicular temperature anisotropy of magnetospheric energetic electrons. In this region, perpendicular and parallel currents as well as the Hall electric field are calculated and found to be consistent with the decoupling of ions from the magnetic field and the crossing of a magnetospheric separatrix region. On the magnetosheath side, Hall electric fields are found smaller as the density is larger but still consistent with the decoupling of ions. Intense quasi-parallel whistler wave emissions are detected propagating both toward and away from the reconnection region in association with a perpendicular anisotropy of the high-energy part of the magnetosheath electron population and a strong perpendicular current, which suggests that in addition to the electron diffusion region, magnetosheath separatrices could be a source region for whistler waves.
  •  
8.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
9.
  • Ergun, R. E., et al. (författare)
  • Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:7, s. 2978-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
  •  
10.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
11.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 117:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E-parallel to)that is larger than predicted by simulations. The high-speed (similar to 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E-parallel to is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
  •  
12.
  • Huang, S. Y., et al. (författare)
  • Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing. - 2041-8205 .- 2041-8213. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρi (∼30 ρe) in the quasi-circular cross-section perpendicular to its axis, where ρi and ρe are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M-N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
  •  
13.
  • Huang, S. Y., et al. (författare)
  • MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:15, s. 7850-7858
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 d(i), where d(i) is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
  •  
14.
  • Koren, O., et al. (författare)
  • Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy
  • 2012
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 150:3, s. 470-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in nonpregnant hosts. Here, to explore their role in pregnancy, we characterized fecal bacteria of 91 pregnant women of varying prepregnancy BMIs and gestational diabetes status and their infants. Similarities between infant-mother microbiotas increased with children's age, and the infant microbiota was unaffected by mother's health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss; however, microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions that impact host metabolism can occur and may be beneficial in pregnancy.
  •  
15.
  • Le Contel, O., et al. (författare)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
16.
  • Mulay, A. L., et al. (författare)
  • Borderline personality disorder diagnosis in a new key
  • 2019
  • Ingår i: Borderline Personality Disorder and Emotion Dysregulation. - : Springer Science and Business Media LLC. - 2051-6673. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Conceptualizations of personality disorders (PD) are increasingly moving towards dimensional approaches. The definition and assessment of borderline personality disorder (BPD) in regard to changes in nosology are of great importance to theory and practice as well as consumers. We studied empirical connections between the traditional DSM-5 diagnostic criteria for BPD and Criteria A and B of the Alternative Model for Personality Disorders (AMPD). Method Raters of varied professional backgrounds possessing substantial knowledge of PDs (N = 20) characterized BPD criteria with the four domains of the Level of Personality Functioning Scale (LPFS) and 25 pathological personality trait facets. Mean AMPD values of each BPD criterion were used to support a nosological cross-walk of the individual BPD criteria and study various combinations of BPD criteria in their AMPD translation. The grand mean AMPD profile generated from the experts was compared to published BPD prototypes that used AMPD trait ratings and the DSM-5-III hybrid categorical-dimensional algorithm for BPD. Divergent comparisons with DSM-5-III algorithms for other PDs and other published PD prototypes were also examined. Results Inter-rater reliability analyses showed generally robust agreement. The AMPD profile for BPD criteria rated by individual BPD criteria was not isomorphic with whole-person ratings of BPD, although they were highly correlated. Various AMPD profiles for BPD were generated from theoretically relevant but differing configurations of BPD criteria. These AMPD profiles were highly correlated and showed meaningful divergence from non-BPD DSM-5-III algorithms and other PD prototypes. Conclusions Results show that traditional DSM BPD diagnosis reflects a common core of PD severity, largely composed of LPFS and the pathological traits of anxiousness, depressively, emotional lability, and impulsivity. Results confirm the traditional DSM criterion-based BPD diagnosis can be reliably cross-walked with the full AMPD scheme, and both approaches share substantial construct overlap. This relative equivalence suggests the vast clinical and research literatures associated with BPD may be brought forward with DSM-5-III diagnosis of BPD.
  •  
17.
  • Webster, J. M., et al. (författare)
  • Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:6, s. 4858-4878
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high-resolution data from dayside passes of the Magnetospheric Multiscale (MMS) mission to create for the first time a comprehensive listing of encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversals, and j.E' > 0. We present an overview of these 32 EDR or near-EDR events, which demonstrate a wide variety of observed plasma behavior inside and surrounding the reconnection site. We analyze in detail three of the 21 new EDR encounters, which occurred within a 1-min-long interval on 23 November 2016. The three events, which resulted from a relatively low and oscillating magnetopause velocity, exhibited large electric fields (up to similar to 100 mV/m), crescent-shaped electron velocity phase space densities, large currents (>= 2 mu A/m(2)), and Ohmic heating of the plasma (similar to 10 nW/m(3)). We include an Ohm's law analysis, in which we show that the divergence of the electron pressure term usually dominates the nonideal terms and is much more turbulent on the magnetosphere versus the magnetosheath side of the EDR.
  •  
18.
  • Wilder, F. D., et al. (författare)
  • Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 118:26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV/m, which led to dissipation on the order of 8 nW/m(3). The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.
  •  
19.
  • Wilder, F. D., et al. (författare)
  • Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5909-5917
  • Tidskriftsartikel (refereegranskat)abstract
    • We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data.
  •  
20.
  • Wilder, F. D., et al. (författare)
  • The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission : A case study
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:5, s. 5487-5501
  • Tidskriftsartikel (refereegranskat)abstract
    • We show observations of whistler mode waves in both the low-latitude boundary layer (LLBL) and on closed magnetospheric field lines during a crossing of the dayside reconnecting magnetopause by the Magnetospheric Multiscale (MMS) mission on 11 October 2015. The whistlers in the LLBL were on the electron edge of the magnetospheric separatrix and exhibited high propagation angles with respect to the background field, approaching 40°, with bursty and nonlinear parallel electric field signatures. The whistlers in the closed magnetosphere had Poynting flux that was more field aligned. Comparing the reduced electron distributions for each event, the magnetospheric whistlers appear to be consistent with anisotropy-driven waves, while the distribution in the LLBL case includes anisotropic backward resonant electrons and a forward resonant beam at near half the electron-Alfvén speed. Results are compared with the previously published observations by MMS on 19 September 2015 of LLBL whistler waves. The observations suggest that whistlers in the LLBL can be both beam and anisotropy driven, and the relative contribution of each might depend on the distance from the X line.
  •  
21.
  • Breuillard, H., et al. (författare)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
22.
  • Carvalho, F. A., et al. (författare)
  • Transient Inability to Manage Proteobacteria Promotes Chronic Gut Inflammation in TLR5-Deficient Mice
  • 2012
  • Ingår i: Cell Host & Microbe. - : Elsevier BV. - 1931-3128. ; 12:2, s. 139-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Colitis results from breakdown of homeostasis between intestinal microbiota and the mucosal immune system, with both environmental and genetic influencing factors. Flagellin receptor TLR5-deficient mice (T5KO) display elevated intestinal proinflammatory gene expression and colitis with incomplete penetrance, providing a genetically sensitized system to study the contribution of microbiota to driving colitis. Both colitic and noncolitic T5KO exhibited transiently unstable microbiotas, with lasting differences in colitic T5KO, while their noncolitic siblings stabilized their microbiotas to resemble wild-type mice. Transient high levels of proteobacteria, especially enterobacteria species including E. coli, observed in close proximity to the gut epithelium were a striking feature of colitic microbiota. A Crohn's disease-associated E. coli strain induced chronic colitis in T5KO, which persisted well after the exogenously introduced bacterial species had been eliminated. Thus, an innate immune deficiency can result in unstable gut microbiota associated with low-grade inflammation, and harboring proteobacteria can drive and/or instigate chronic colitis.
  •  
23.
  • Chen, L. -J, et al. (författare)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
24.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection in Three Dimensions : Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:12, s. 10085-10103
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a model of electromagnetic drift waves in the current sheet adjacent to magnetic reconnection at the subsolar magnetopause. These drift waves are potentially important in governing 3-D structure of subsolar magnetic reconnection and in generating turbulence. The drift waves propagate nearly parallel to the X line and are confined to a thin current sheet. The scale size normal to the current sheet is significantly less than the ion gyroradius and can be less than or on the order of the wavelength. The waves also have a limited extent along the magnetic field (B), making them a three-dimensional eigenmode structure. In the current sheet, the background magnitudes of B and plasma density change significantly, calling for a treatment that incorporates an inhomogeneous plasma environment. Using detailed examination of Magnetospheric Multiscale observations, we find that the waves are best represented by series of electron vortices, superimposed on a primary electron drift, that propagate along the current sheet (parallel to the X line). The waves displace or corrugate the current sheet, which also potentially displaces the electron diffusion region. The model is based on fluid behavior of electrons, but ion motion must be treated kinetically. The strong electron drift along the X line is likely responsible for wave growth, similar to a lower hybrid drift instability. Contrary to a classical lower hybrid drift instability, however, the strong changes in the background B and n(o), the normal confinement to the current sheet, and the confinement along B are critical to the wave description.
  •  
25.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection in Three Dimensions : Observations of Electromagnetic Drift Waves in the Adjacent Current Sheet
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:12, s. 10104-10118
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection at the subsolar magnetopause is persistently accompanied by strong fluctuations of the magnetic field (B), plasma density (n), and all components of the electric field (E) and current (J). The strongest fluctuations are at frequencies below the lower hybrid frequency and observed in a thin, intense current sheet adjacent to the electron diffusion region. In this current sheet, the background magnitudes of B and n are changing considerably, creating an inhomogeneous plasma environment. We show that the fluctuations in B and n are consistent with an oscillatory displacement of the current sheet in the surface normal direction. The displacement is propagating parallel to the magnetic reconnection X line. Wavelengths are on the order of or longer than the thickness of the current sheet to which they are confined, so we label these waves electromagnetic drift waves. E and J fluctuations are more complex than a simple displacement. They have significant variations in the component along B, which suggest that the drift waves also may be confined along B. The current sheet is supported by an electron drift driven by normal electric field, which, in turn, is balanced by an ion pressure gradient. We suggest that wave growth comes from an instability related to the drift between the electrons and ions. We discuss the possibility that drift waves can displace or penetrate into the electron diffusion region giving magnetic reconnection three-dimensional structure. Drift waves may corrugate the X line, possibly breaking the X line and generating turbulence.
  •  
26.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
27.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
  •  
28.
  • Ergun, R. E., et al. (författare)
  • Observations of Particle Acceleration in Magnetic Reconnection-driven Turbulence
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 898:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale Mission observes, in detail, charged particle heating and substantial nonthermal acceleration in a region of strong turbulence (vertical bar delta B vertical bar/vertical bar B vertical bar similar to 1, where B is the magnetic field) that surrounds a magnetic reconnection X-line. Magnetic reconnection enables magnetic field annihilation in a volume that far exceeds that of the diffusion region. The formidable magnetic field annihilation breaks into strong, intermittent turbulence with magnetic field energy as the driver. The strong, intermittent turbulence appears to generate the necessary conditions for nonthermal acceleration. It creates intense, localized currents (J) and unusually large-amplitude electric fields (E). The combination of turbulence-generated E and J results in a significant net positive mean of J center dot E, which signifies particle energization. Ion and electron heating rates are such that they experience a fourfold increase from their initial temperature. Importantly, the strong turbulence also generates magnetic holes or depletions in vertical bar B vertical bar that can trap particles. Trapping considerably increases the dwell time of a subset of particles in the turbulent region, which results in significant nonthermal particle acceleration. The direct observation of strong turbulence that is enabled by magnetic reconnection with nonthermal particle acceleration has far-reaching implications, since turbulence in plasmas is pervasive and may occupy significant volumes of the interstellar medium and intergalactic space. For example, strong turbulence from magnetic field annihilation in the supernova nebulae may dominate large volumes. As such, this observed energization process could plausibly contribute to the supply and development of the cosmic-ray spectrum.
  •  
29.
  • Ergun, R. E., et al. (författare)
  • The Axial Double Probe and Fields Signal Processing for the MMS Mission
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672. ; 199:1-4, s. 167-188
  • Forskningsöversikt (refereegranskat)abstract
    • The Axial Double Probe (ADP) instrument measures the DC to similar to 100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of similar to 1 mV/m, a resolution of similar to 25 mu V/m, and a range of similar to 1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, > 100 dB in dynamic range, better that -80 dB common mode rejection in electric field (E) signal processing, and better that -80 dB cross talk between the E and SCM (B) signals. The A/D conversion is at 16 bits with similar to 1/4 LSB accuracy and similar to 1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are described in this article.
  •  
30.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
31.
  • Furtado, R. H. M., et al. (författare)
  • Efficacy and Safety of Dapagliflozin in Type 2 Diabetes According to Baseline Blood Pressure: Observations From DECLARE-TIMI 58 Trial
  • 2022
  • Ingår i: Circulation. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7322 .- 1524-4539. ; 145:21, s. 1581-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dapagliflozin improved heart failure and kidney outcomes in patients with type 2 diabetes (T2DM) with or at high risk for atherosclerotic cardiovascular disease in the DECLARE-TIMI 58 trial (Dapagliflozin Effect on Cardiovascular Events - Thrombolysis in Myocardial Infarction 58). Here, the aim was to analyze the efficacy and safety of dapagliflozin stratified according to baseline systolic blood pressure (SBP). METHODS: The DECLARE-TIMI 58 trial randomly assigned patients with T2DM and either previous atherosclerotic cardiovascular disease or atherosclerotic cardiovascular disease risk factors to dapagliflozin or placebo. Patients were categorized by baseline SBP levels: <120, 120 to 129, 130 to 139, 140 to 159, and >= 160 mm Hg (normal, elevated, stage 1, stage 2, and severe hypertension, respectively). Efficacy outcomes of interest were hospitalization for heart failure and a renal-specific composite outcome (sustained decrease in estimated glomerular filtration rate by 40%, progression to end-stage renal disease, or renal death). Safety outcomes included symptoms of volume depletion, lower extremity amputations, and acute kidney injury. RESULTS: The trial comprised 17160 patients; mean age, 64.0 +/- 6.8 years; 37.4% women; median duration of T2DM, 11 years; 40.6% with prevalent cardiovascular disease. Overall, dapagliflozin reduced SBP by 2.4 mm Hg (95% CI, 1.9-2.9; F<0.0001) compared with placebo at 48 months. The beneficial effects of dapagliflozin on hospitalization for heart failure and renal outcomes were consistent across all baseline SBP categories, with no evidence of modification of treatment effect (P-interactions = 5 0.28 and 0.52, respectively). Among normotensive patients, the hazard ratios were 0.66 (95% CI, 0.42-1.05) and 0.39 95% CI, 0.19-0.78), respectively, for hospitalization for heart failure and the renal-specific outcome. Events of volume depletion, amputation, and acute kidney injury did not differ with dapagliflozin overall or within any baseline SBP group. CONCLUSIONS: In patients with T2DM with or at high atherosclerotic cardiovascular disease risk, dapagliflozin reduced risk for hospitalization for heart failure and renal outcomes regardless of baseline SBP, with no difference in adverse events of interest at any level of baseline SBP. These results indicate that dapagliflozin provides cardiorenal benefits in patients with T2DM at high atherosclerotic cardiovascular disease risk independent of baseline blood pressure.
  •  
32.
  • Goodrich, J.K., et al. (författare)
  • Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias. © 2021, The Author(s).
  •  
33.
  • Goodrich, Jordan P., et al. (författare)
  • High-frequency measurements of methane ebullition over a growing season at a temperate peatland site
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38, s. L07404-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bubbles can contribute a significant fraction of methane emissions from wetlands; however the range of reported fractions is very large and accurate characterization of this pathway has proven difficult. Here we show that continuous automated flux chambers combined with an integrated cavity output spectroscopy (ICOS) instrument allow us to quantify both CH(4) ebullition rate and magnitude. For a temperate poor fen in 2009, ebullition rate varied on hourly to seasonal time scales. A diel pattern in ebullition was identified with peak release occurring between 20:00 and 06:00 local time, though steady fluxes (i.e., those with a linear increase in chamber headspace CH(4) concentration) did not exhibit diel variability. Seasonal mean ebullition rates peaked at 843.5 +/- 384.2 events m(-2) d(-1) during the summer, with a mean magnitude of 0.19 mg CH(4) released in each event.
  •  
34.
  • Goodrich, K. A., et al. (författare)
  • Impulsively Reflected Ions : A Plausible Mechanism for Ion Acoustic Wave Growth in Collisionless Shocks
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:3, s. 1855-1865
  • Tidskriftsartikel (refereegranskat)abstract
    • We present recent high time resolution observations from an oblique (43 degrees) shock crossing from the Magnetospheric Multiscale mission. Short-duration bursts between 10 and 100 ms of ion acoustic waves are observed in this event alongside a persistent reflected ion population. High time resolution (150 ms) particle measurements show strongly varying ion distributions between successive measurements, implying that they are bursty and impulsive by nature. Such signatures are consistent with ion bursts that are impulsively reflected at various points within the shock. We find that, after instability analysis using a Fried-Conte dispersion solver, the insertion of dispersive ion bursts into an already stable ion distribution can lead to wave growth in the ion acoustic mode for short durations of time. We find that impulsively reflected ions are a plausible mechanism for ion acoustic wave growth in the terrestrial bow shock and, furthermore, suggest that wave growth can lead to a small but measurable momentum exchange between the solar wind ions and the reflected population.
  •  
35.
  • Hansel, P. J., et al. (författare)
  • Mapping MMS Observations of Solitary Waves in Earth's Magnetic Field
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrostatic solitary waves (ESWs) are a type of nonlinear time-domain plasma structure (TDS) generally defined by bipolar electric fields and propagation parallel to the local magnetic field. Formation mechanisms for TDSs in the magnetosphere have been studied extensively and are associated with plasma boundary layers and the braking of bursty bulk flows (BBFs). However, the rapid timescales over which these TDSs occur (<2 ms) make them infeasible to count by eye over large time periods. Furthermore, high-cadence data are not always available. The Solitary Wave Detector (SWD) on NASA's Magnetospheric Multiscale (MMS) mission quantifies the occurrence and amplitude of TDS throughout the constellation's orbit; analysis of burst (65 kS/s) parallel electric field data indicates that the SWD captures approximately 60% of all bipolar TDS encountered in the tail region, enabling large-scale examination of their occurrence. Maps of TDS occurrence rates during several years of the MMS mission were generated from SWD data, showing enhanced TDS density in the tail region between 6 and 9 Re; enhance occurrence in or near shocks; and an unexpected enhancement in the dawn side of the tail and in the radiation belt.
  •  
36.
  • Khotyaintsev, Yuri V., et al. (författare)
  • Electron jet of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5571-5580
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E-vertical bar amplitudes reaching up to 300mVm(-1) and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
  •  
37.
  • Santoni, Gregory W., et al. (författare)
  • Mass fluxes and isofluxes of methane (ch4) at a new hampshire fen measured by a continuous wave quantum cascade laser spectrometer
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D10301-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a mid-infrared continuous-wave quantum cascade laser direct-absorption spectrometer (QCLS) capable of high frequency (>= 1 Hz) measurements of (CH4)-C-12 and (CH4)-C-13 isotopologues of methane (CH4) with in situ 1-s RMS delta C-13(CH4) precision of 1.5 parts per thousand and Allan-minimum precision of 0.2 parts per thousand. We deployed this QCLS in a well-studied New Hampshire fen to compare measurements of CH4 isoflux by eddy covariance (EC) to Keeling regressions of data from automated flux chamber sampling. Mean CH4 fluxes of 6.5 +/- 0.7 mg CH4 m(-2) hr(-1) over two days of EC sampling in July, 2009 were indistinguishable from mean autochamber CH4 fluxes (6.6 +/- 0.8 mgCH(4) m(-2) hr(-1)) over the same period. Mean delta C-13(CH4) composition of emitted CH4 calculated using EC isoflux methods was -71 +/- 8 parts per thousand (95% C.I.) while Keeling regressions of 332 chamber closing events over 8 days yielded a corresponding value of -64.5 +/- 0.8 parts per thousand Ebullitive fluxes, representing similar to 10% of total CH4 fluxes at this site, were on average 1.2 parts per thousand enriched in C-13 compared to diffusive fluxes. CH4 isoflux time series have the potential to improve process-based understanding of methanogenesis, fully characterize source isotopic distributions, and serve as additional constraints for both regional and global CH4 modeling analysis.
  •  
38.
  • Stawarz, J. E., et al. (författare)
  • Magnetospheric Multiscale analysis of intense field-aligned Poynting flux near the Earth's plasma sheet boundary
  • 2017
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 44:14, s. 7106-7113
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale mission is employed to examine intense Poynting flux directed along the background magnetic field toward Earth, which reaches amplitudes of nearly 2 mW/m(2). The event is located within the plasma sheet but likely near the boundary at a geocentric distance of 9 RE in association with bulk flow signatures. The fluctuations have wavelengths perpendicular to the magnetic field of 124-264 km (compared to an ion gyroradius of 280 km), consistent with highly kinetic Alfven waves. While the wave vector remains highly perpendicular to the magnetic field, there is substantial variation of the direction in the perpendicular plane. The field-aligned Poynting flux may be associated with kinetic Alfven waves released along the separatrix by magnetotail reconnection and/or the radiation of waves excited by bursty bulk flow braking and may provide a means through which energy released by magnetic reconnection is transferred to the auroral region.
  •  
39.
  • Stawarz, J. E., et al. (författare)
  • Observations of turbulence in a Kelvin-Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing. - 2169-9380 .- 2169-9402. ; 121:11, s. 11021-11034
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial and high-time-resolution properties of the velocities, magnetic field, and 3-D electric field within plasma turbulence are examined observationally using data from the Magnetospheric Multiscale mission. Observations from a Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause are examined, which both provides a series of repeatable intervals to analyze, giving better statistics, and provides a first look at the properties of turbulence in the KHI. For the first time direct observations of both the high-frequency ion and electron velocity spectra are examined, showing differing ion and electron behavior at kinetic scales. Temporal spectra exhibit power law behavior with changes in slope near the ion gyrofrequency and lower hybrid frequency. The work provides the first observational evidence for turbulent intermittency and anisotropy consistent with quasi two-dimensional turbulence in association with the KHI. The behavior of kinetic-scale intermittency is found to have differences from previous studies of solar wind turbulence, leading to novel insights on the turbulent dynamics in the KHI.
  •  
40.
  • Torbert, R. B., et al. (författare)
  • Estimates of terms in Ohm's law during an encounter with an electron diffusion region
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 5918-5925
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements from the Magnetospheric Multiscale (MMS) mission taken during a reconnection event on the dayside magnetopause which includes a passage through an electron diffusion region (EDR). The four MMS satellites were separated by about 10 km such that estimates of gradients and divergences allow a reasonable estimate of terms in the generalized Ohm's law, which is key to investigating the energy dissipation during reconnection. The strength and character of dissipation mechanisms determines how magnetic energy is released. We show that both electron pressure gradients and electron inertial effects are important, but not the only participants in reconnection near EDRs, since there are residuals of a few mV/m (similar to 30-50%) of E + U-e x B (from the sum of these two terms) during the encounters. These results are compared to a simulation, which exhibits many of the observed features, but where relatively little residual is present.
  •  
41.
  • Whiffin, N, et al. (författare)
  • The effect of LRRK2 loss-of-function variants in humans
  • 2020
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 26:6, s. 869-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson’s disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns5–8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9, 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work10, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.
  •  
42.
  • Wilder, F. D., et al. (författare)
  • Observations of large-amplitude, parallel, electrostatic waves associated with the Kelvin-Helmholtz instability by the magnetospheric multiscale mission
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:17, s. 8859-8866
  • Tidskriftsartikel (refereegranskat)abstract
    • On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mV/m) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.
  •  
43.
  • Wilder, F. D., et al. (författare)
  • The Role of the Parallel Electric Field in Electron-Scale Dissipation at Reconnecting Currents in the Magnetosheath
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:8, s. 6533-6547
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of reconnecting current sheets in the magnetosheath over a range of out-of-plane "guide" magnetic field strengths. The currents exhibit nonideal energy conversion in the electron frame of reference, and the events are within the ion diffusion region within close proximity (a few electron skin depths) to the electron diffusion region. The study focuses on energy conversion on the electron scale only. At low guide field (antiparallel reconnection), electric fields and currents perpendicular to the magnetic field dominate the energy conversion. Additionally, electron distributions exhibit significant nongyrotropy. As the guide field increases, the electric field parallel to the background magnetic field becomes increasingly strong, and the electron nongyrotropy becomes less apparent. We find that even with a guide field less than half the reconnecting field, the parallel electric field and currents dominate the dissipation. This suggests that parallel electric fields are more important to energy conversion in reconnection than previously thought and that at high guide field, the physics governing magnetic reconnection are significantly different from antiparallel reconnection.
  •  
44.
  • Zona, Donatella, et al. (författare)
  • Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy